Supplementary Material for
Controls on Pollution Ozone Production Measurable from Surface,
Aircraft, and Satellite Monitors

Chatfield, Ren, Brune, Crawford, Esswein, Fried, Olson, Shetter

Sampling.
The International Consortium for Atmospheric Research on Transport and Transformation contained several land-based and aircraft-borne research programs, including INTEX-NA, the Intercontinental Transport Experiment - North America [Singh et al., 2007]. NASA’s main contributions to ICARTT were satellite measurements and measurements aboard the DC-8 aircraft, including OH (hydroxyl), HO$_2$ (hydroperoxyl), and NO (nitric oxide) radicals. (M1), photolysis rates [Shetter et al., 2002], and HCHO Fried et al., 1997]. These were used in our analyses. Only daytime data with [HCHO] > 30 ppt and [NO] > 10 ppt for the region 0-1300 m characterizing Continental North America south of were used. Figure S1 indicates the broad sampling region. The sampling period was not one of remarkably high regional ozone. An indirect estimate of NO was also available from highly accurate measurements of NO$_2$, but was not needed in this analysis, since our estimates tend to have canceling effects at very low NO values where the indirect estimates might be superior. We found no difficulties suggested by the histograms describing the statistical distribution of direct low NO that would urge a change to indirect measurements based on NO$_2$. Surface-based data exist which characterize near-urban environments, but such samples must be examined more carefully.

Background Regarding Ozone Production.
Jacobson and Seinfeld and Pandis introduce smog ozone chemistry and mathematical approaches to its simulation. Chatfield and Delany [1990] McKee et al. [1991], Olszyna, et al., 1994] among many others describe inherent difficulties in numerical simulation of smog. analyses describe the difficulty of the problem. Factors determining smog ozone may be partially composed with this summary formula:
\[
dO_3/dt = P_{O_3} - L_{O_3}[O_3] + Tr + Dep + Het,
\]
describing chemical production, chemical loss (expressed as proportional to ambient ozone concentrations), transport, deposition, and (aerosol-cloud) heterogeneous removal. In our experience, major controversies concerning air pollution control confront the difficulty of distinguishing relatively local chemical production from more distant transport (e.g., interstate).

Thornton et al. [2002], Sillman et al. [2002], Kleinman [2005a], and Kleinman et al[2005b] relate urban and regional smog to observational evidence, concentrating on the production term, P_{O_3}. HO$_2$ reactions with RO$_2$ and other HO$_2$ radicals are the primary ways that peroxy radical production does not lead to ozone production. There are various self-consistent ways to describe production of oxidant, e.g., one variant is to subtract the rate destruction of NO$_2$ by OH. We consider this to be a destruction term for oxidant, one that can be of comparable magnitude to the destruction of ozone by HO$_2$ and of excited atomic oxygen by water.

Variety of Conditions Sampled
The statistical estimation we employed was based on all samples in the Eastern and Midwestern United States (plus a few in Canada) during the INTEX-NA sampling period. The locations of the simultaneous measurements used to make the estimate are shown in Figure S1.

Estimation of Production Functions F_2
The purely statistical 2-D relationships were estimated using two variables, $\alpha = \log_{10}(\phi \cdot \nu)$ and a compact bounded expression of the ratio, viz $\beta = \arctan(\phi / \nu)$. We then used
the R language routine gam in the mgcv package by Simon Wood [2004] to estimate a version of $\log_{10}(F_j)$ as a function of α and β. α was allowed 3 degrees of freedom, and β was allowed 4. Contours in each sector of the graph are allowed individual fitting by mgcv. It was appropriate to use logarithms to cover the wide range of predictors and ozone production, and also since the quantities tended to have errors proportional to the quantity [Ren et al., 2008]. The transform allowed the curves to emphasize a hyperbolic relationship, reveal deviations from that relationship directly, and avoid problems with very low values of j_{HCHO} [HCHO] or [NO]. The relationship was then transformed back to be graphed on the familiar axes shown, which represent predominantly the effects of VOC’s and NO on ozone primary production rate. For the quantity $\log_{10}(F_j)$, $r = 0.96$ and $r^2 = 0.92$, an impressive fit. For F_2 itself, F_2, $r = 0.88$ and $r^2 = 0.78$; note that this fitting method respected relative error in the measurements and did not attempt unrealistically to fit high ozone production rates, in view of the likelihood of high measurement error. Consequently, as estimated by mgcv, F_2 did not explain appreciably more of the variance than f_i. A wider study might allow greater variance explained. A red dashed line in Figure 2a indicates a perfect hyperbola, and many of the contours approximate a hyperbola fairly well.

Varying the number of degrees of freedom did not significantly alter the relationship, the slightly deformed hyperbola, nor did direct computation using $\log(\phi)$ and $\log(y)$; Rather than resembling Q_3 or modeled ozone production (each described below), fits with more parameters simply made exceptions for very localized features which appeared around the sparsely populated periphery of the dataset; we conclude that a very simple description fits the data. Since Figure 1b uses logarithmic axes, and the dashed red line indicates a perfect hyperbolic, $\phi \nu = $ constant, relationship. Perfect hyperbolas imply that f_i (whose estimation is described below) is a statistically complete explanation of the F_j relationship. These allow us to seek (expectable) deviations from f_i behavior. HO$_2$, NO, and HCHO are quoted to have an approximately 10% accuracy; both the local smoothness of both f_i and F_2 suggest that random error in the precision of these variables has a (surprisingly) small effect. In this situation we surmise that further analysis of possible structure in F_2 is not statistically warranted by our sample; rather more data points should be added in a search for behavior of estimated functions with even more varied VOC and NO, mixtures.

Estimation of the Production Function f_i

f_i was first estimated using the projection pursuit regression routine ppr in the R statistical language. This technique suggested nothing more than a simple spline fit of $\phi \nu$. A spline-fit method with generalized cross-validation was employed; non-decreasing functions were required to avoid-overfitting the top 5% situations of ozone production. Other terms may be added using ppr. Terms involving the production of radicals involving ozone photolysis; a large variety of terms expressing in terms of simple measurable species, e.g., reactions of the excited product O(1D) with water, and reactions of OH radicals with CO were attempted; these did not add significant amounts of explained variance. A natural question is the sufficiency of the best possible fit using only NO, let us call it $f_0([\text{NO}])$, and the best fit using both NO and UV, f_{00} ($j_{\text{HCHO}}[\text{NO}]$). These successfully explained 50–60% and 63–69% of the variance, short of the 79–84% possible by using all three factors. The higher values quoted for $f_0([\text{NO}])$ and f_{00} ($j_{\text{HCHO}}[\text{NO}]$) had features that made them appear accidental or misleading, i.e., with wiggles or notable decreasing behavior as NO approached higher values. It is interesting to note the correlation of the quantities $f_i(\alpha) / [\text{NO}]$ with $g_0 / [\text{NO}]$, to address the fact that we are correlating [NO] with a function of [NO]. The correlation is $r = 0.67$ ($r^2 = 0.45$), indicating a substantial variance explained associated with this portion of P_0, independent of [NO] self-correlation.

By excluding only 5 points from α-based fit with significantly poorer fit than 839 others, the estimated $f_i(\alpha)$ could achieve a variance explained of 84%. However, we could not exclude
the possibility that the five points represented genuine if anomalous plumes with special
composition in the rural atmosphere sampled.

Estimation of the Kinetics-based Function Form Q_2

Useful insight into the character of f_i is available by statistical estimation using a
different approach. We attempt to mimic the mathematics of the basic kinetics, while
continuing to use only commonly available observational data. It is best to describe a three-
parameter fit of the HO$_2$ radical concentration, although one parameter must be set. Since HO$_2$
radicals persist only a few seconds in daylight, we make a quasi-steady state approximation to
the HO$_2$ radical concentration (d[HO$_2$]/dt << chemical sink and source terms). The quadratic
relationship
\[
2\eta k_{HH} [\text{HO}_2]^2 + (1 - \rho)k_{NH}[\text{NO}] [\text{HO}_2] = \gamma j_{\text{HCHO}}[\text{HCHO}]
\]
equates the loss terms due to peroxyl radical self reaction and NO reaction with the a source
term. k_{NH} and k_{HH} refer to the reaction rate coefficients of HO$_2$+NO and HO$_2$+ HO$_2$ respectively.
Each term contains a parameter modifier (η, ρ, or γ) that attempts to broaden the scope
of kinetic processes contemplated while keeping a simple form quadratic in [HO$_2$]. The factor
γ on the right-hand side expresses the multiplier on $j_{\text{HCHO}}[\text{HCHO}]$ that expresses the
instantaneous source of new HO radicals. If only HCHO photolysis provides radicals, $\gamma = 2$.
The sink of HO$_2$ due to self-reaction is of course $2k_{HH} [\text{HO}_2]^2$. Hydroperoxyl radicals may
also be destroyed by reaction with organic peroxides, RO$_2$ and RO, frequently correlates with
HO$_2$ closely, since RO production often results from or creates a reaction that also produces HO$_2$.
Statistical fits will pick this up. The rate coefficient differs from that of HO$_2$ self reaction, and the
reaction only destroys one HO$_2$. All of these complexities must be summarized by one
parameter, η.

The role of ρ may seem indirect, but a significant value, countering the HO$_2$+NO
reaction, is absolutely required for the quadratic relationship to have the right behavior as a
function of NO. The alternative of an incorrect, very low measured direct rate k_{NH} has been
repeatedly studied and seems very improbable [JPL, 2006]. Of course we have not yet
accounted for recycling of radicals, e.g., OH+CO \rightarrow H + CO$_2$ \rightarrow HO$_2$. Our best estimate for this
is simply to parameterize this based on the HO$_2$+NO rate; in very long radical-chain situations,
ρ approaches 1. Note that since the parameterization contains the factors [NO][HO$_2$], it is placed
on the left-hand side of the quadratic. The estimation does not work well without a
consequential value of ρ, for $\rho = 0$ the behavior of HO$_2$ with increasing NO cannot be fit. We
surmise that the effect of ignoring statistical correlations of NO with some process like this may
be noted in at the bottom of Figure 7 of Ren et al. [2008]; possibly the model and observations
have differing chain lengths. (For values of NO below 50 ppt in that figure, HO$_2$ self reaction
dominates and there is no effect.) Thus ρ represents all rapid processes more dependent on NO
than on photolysis, and might be used to derive the chain length of the rapid OH-HO$_2$ process.
The solution to the quadratic can be written,
\[
[\text{HO}_2] = \gamma j_{\text{rad}}[\text{HCHO}]/\left(\left(1 - \rho\right)k_{NH}[\text{NO}] + \sqrt{(1 - \rho)^2 k_{NH}^2[\text{NO}]^2 + 4k_{NH}[\text{NO}] j_{\text{rad}}[\text{HCHO}]}\right)
\]
and the primary production rate of ozone is then obtained by multiplying by $k_{NH}[\text{NO}]$. The
three parameters must $\eta, (1 - \rho)$, and γ all vary in a proportion. Assuming $\eta = 1.5$, we have $\rho =
0.77$ (seems high) and $\gamma = 13.8$. Proportionally lower values may be more realistic. All of these
are reasonable values, but the set ($\eta, 1 - \rho$, and γ) are linearly dependent in this analysis, and
can each move up or down by the same factor to values that the reader may prefer.

POGO-FAN
We have named the estimation technique “Production of Ozone by Guaging of
(organic) Oxidation: Formaldehyde and Nitric oxide (POGO-FAN) in recognition of the
difficulty and opportunity that the control of smog ozone poses for our society. Smog-producing
ways, probably unnecessary, seem to be embedded in of our daily habits. The invented
character Pogo is famous for opining that “we have met the enemy, and he is us.” a wry
reunderstanding of Commander Oliver Parry’s triumphal message during the War of 1812:
“We have met the enemy and they are ours.”

References beyond those presented in the main text
Chatfield, R. B. and Delaney, A. C.: Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3, J. Geophys. Res., 95, 18 473–18 488, 1990.
POGO information currently available at http://www.pogo-fan-club.org/faq.html and likely visible by internet search. See also introduction to W. Kelly, Potluck Pogo (Simon and Schuster, New York, 1955).
Figure S1. Widely differing smog-production conditions as sampled in the continental boundary layer ozone by the NASA DC-8 during INTEX-NA. Color scale refers to log10 of the “formaldehyde activity” divided by the NO\textsubscript{x} concentration, in ppt units. Formaldehyde activity is taken to be the formaldehyde concentration times its photolysis rate (s-1) to radicals and CO, and is described below to be one measure of VOC weighted by reactivity. Approximately 1800 samples over the populated regions of Central and Eastern North America were included, or samples potentially just downwind. Altitudes up to 1300 m ASL were included since the DIAL observations suggested that they were relatively similar in ozone and aerosol characteristics, e.g., influenced by cloud mixing. We conclude that a wide variety of NO\textsubscript{x}-limited and VOC-(radical-production-) limited areas were sampled.