Anomalous HNO₃/NOₓ ratio of remote tropospheric air: Conversion of nitric acid to formic acid and NO₂?

Robert B. Chatfield
NASA Ames Research Center, Moffett Field, California

Abstract. The N oxidation ratio, [HNO₃]/[NOₓ], in the free troposphere is measured at ~ 1 to 9 (averaging ~5), consistently lower than the values of 15-100 which known theory suggests to be reached rapidly. This discrepancy casts doubt on current models’ abilities to predict effects of NO sources on remote [NO], and so also [O₃] and [OH]. HNO₃-to-NOₓ recycling processes involving HCHO in solution are appealing explanations for the ratio. Known chemical theory are illustrated using a Lagrangian box model of the mid-troposphere which simulates characteristic episodic input of NO₂ in the upper troposphere and different conditions. We model can usefully restrict conceivable explanations of missing chemistry of fast nitrogen cycling; most explanations could be called “fast-cycles” or “re-NOₓification”. These equations also show how current global models might suggest spuriously good NO oxidation ratio estimates and errors in OH. Aerosol or cloud droplets reactions with HCHO may produce (a) formic acid (which needs an appropriate route) and [HNO₃] or alternatively (b) hydroxymethyl nitrate (or methyl formate) which might supply a large, variable amount of “missing NOₓ” not currently measurable except by NOₓ instruments.

Current Theory

This note concerns the ratio [HNO₃]/[NOₓ], as observed and as correctly and incorrectly simulated. (NOₓ = NO + NO₂) compounds which interchanging rapidly, given day light.) Figure 1 (discussed below) depicts the activity of tropospheric nitrogen. NO is the N compound whose activity is most important, as it determines tropospheric oxidizing capacity, directly, in its effect on instantaneous local OH, and also cumulatively, in its control on ozone [Chameides and Walker, 1973; Liu et al., 1987]. Hence it has a key role with respect to future greenhouse gas and reactive chlorocarbon concentrations.

Gas-Phase Theory. A summary of the basic chemistry of the nitrogen oxides (NOₓ) with an emphasis on the role of HNO₃ as a reservoir is shown in Figure 1. Active nitrogen enters the atmosphere as NO. The NO typically reacts with ozone or peroxy radicals in a few minutes to make NO₂, and the rapid daytime photolysis of NO₂ then establishes the NOₓ photochemical steady state in the troposphere (see Ridley et al., 1992; Liu et al., 1992), and references for reactions and details). The figure reminds us that oxidation by OH radical of the NO₂ form of NOₓ is quite rapid, giving NOₓ a lifetime by this process of ~1 day in the lowest kilometers of the free troposphere, and increasing to 3 days at 6.5 km, longer in the upper troposphere, depending on conditions. We will analyze an archetypal situation for detailed chemical analysis, in which there are fresh, initially concentrated emissions, emissions which may be due to lightning, aircraft, or lofted near-surface NOₓ. Only the stratospheric NOₓ source should contribute primarily more HNO₃, not NOₓ, and be very intermittent. Sinks of tropospheric NOₓ are rannnent and transport to the surface. In most likely situations, either the existing nitric acid vapor is removed when fresh emissions occur, or it may be considered overwhelmed by the new emissions. [Dickerson et al., 1987]. We analyze these situations using a Lagrangian box model, assuming that turbulent motions and removable of solubles from a parcel are very restricted in the mid troposphere for many day periods between disturbance by deep, raining clouds that accompany storms. This intermittency of mixing is indicated by the laminated structure of many tropospheric species observed by aircraft. Consequently, the model should get local photochemical relationships as well as 3-d models highly resolved in time and height. Results of the model shown in the lower part of Figure 2 extend to ten days from an initial state of all NOₓ and no HNO₃. The model shown simulates subtropical East Pacific conditions appropriate to some observations described below.

The upper panel of Figure 2 shows the time course of the [HNO₃]/[NOₓ] ratio. This low-ratio state starts what we may call a “NOₓ clock”; the ratio increases monotonically over a period of several days, and can be used to assign an age to the air parcel since the last disturbance. Starting the NO oxidation ratio at zero allows the maximum opportunity for the photochemical reaction to affect NO concentrations. The model displays current chemistry, with C3-C4 hydrocarbons oxidized as described in Chatfield and Delany [1980]; where possible, we have updated to the recent recommendations of JPL [1992] or more comprehensive ones of Atkinson et al. [1997]. The photochemical conditions (fully diurnal, cloud-free) are appropriate for air arriving from the surface and upward of the MLOEX site in Hawaii [Ridley and Robinson, 1992, Ridley et al., 1992], and generally similar to regions sampled in the CITE 2 aircraft study [Huebert et al., 1990], especially in the marine samples. The figure and the analysis are generally relevant to the troposphere of the non winter mid-latitudes and the tropics, and the region between 1.5 and 7 km altitude, regions significant for methane and HCPC destruction and also

Fig. 1. An analysis of the basic chemistry of the operation of the NO₂ clock. Reaction with hydroxyl radical converts NO₂ to HNO₃ within a day or so. Nighttime aerosol and cloud processes (written l and s for liquid and solid phase; g signifies gas-phase) can add to this conversion. The known NO₂ recycling process involve the reaction of nitric acid with hydroxyl, and photolysis. Theory suggests that these are very slow, having time scales of nearly forty and sixty days. Theory suggests the time-scales return to steady state from any conditions of NOₓ, and HNO₃ are set by the rapid forward conversion timescale: essentially, high-HNO₃ states need to convert very little material back to NOₓ.
Fig 2. (left) The NOx clock (see text). Labeled plots show the increase in hydrogen peroxide and nitric acid as fresh emissions of nitric oxide are transformed through the nitrogen cycle. (Right) Nitric acid-to-NOx ratio as measured in the CITE-2 observations (abstracted from Huebert et al., [1990]) and as observed in the MLOPEX experiments: for Mauna Loa downslope winds — a sample of the free troposphere: both show mean values near 4.

for O3 production. Air below 1.5 km is excluded: it can mix to the surface, and pass often through shallow clouds. There, rapid deposition of HNO3 may easily explain lower [HNO3]/[NO2] ratios, over land, new NOx may appear.

The final models’ asymptotic ratios (34 here, 319 in Ridley et al., [1992], Liu et al., [1992]) and the spred of quasi-exponential approach to these steady states tend to be relatively independent of the starting concentration of NOx. Approach to the final steady state should be similarly fast, 2–3 days, in all mid-tropospheric cases, since OH depends little on NOx when the latter is below 300 pptv [Liu et al., 1992]. An additional pathway from NOx to nitric acid is via the nighttime formation of NO3 radical via the ozone reaction, and this can oxidize further to NO2, which then becomes nitric acid upon contact with water in liquid, solid, and perhaps gas phase [PPL, 1992]. In attempting to minimize discrepancy, a minimal conversion rate 0.66 x the upper-limit gas-phase recommendation is included here. These conversion timescales accelerate with higher starting NOx and species associated with early-stage photochemistry like ozone and aldehydes, and this compensates for lower OH frequency found above 1 ppm NOx. Very similar behavior of the clock occurs for many different initial concentrations. Inclusion of reasonable values for surface reactions leads to theoretical ratios of 30–100 in our calculations, time-scales for transformation are correspondingly shortened.

A Ratio Condition. An algebraic relationship quantifies some ideas implicit in our discussion so far. A steady-state analysis of NOx is reasonable when the time derivative of NO2 is small compared to the production and loss terms (after 1–2 half-lives, 1–2 days). This analysis suggests a relationship for NOx, and consequently for NO2. Referring to Figure 1, the asymptotic N oxidation ratio should be, to a close approximation,

\[
\frac{[HNO_3]}{[NO_2]} = \frac{k_1[OH] \times [NO_2]/[NO_2]}{[NO_2]} = \frac{k_2[OH]}{[NO_2]} \quad \text{seconds}^{-1}
\]

where \(S \) is an indicator for any coupled (or simulated), essentially continuous, sources of nitrogen oxides. Including NO2 reaction with water raises the numerators. Since \(k_1[OH] \), the major determinant of the timescale for NO2 destruction, is a day or so in the tropics or midlatitudes, and NO2 is the dominant component of NOx below 8 km, we may expect that this ratio will hold for situations that have not been disturbed for two or three days (see Figure 2). The chemical components of the ratio are basic, simple photochemical terms which are thought to be well known. What the equation says is this: if a parcel is isolated from sources (and physical) sinks for times longer than the NOx oxidation timescale, then the ratio of the species concentrations is the inverse of the ratio of their interconversion timescales, appropriately combined. If emissions S are continuous, they may be included to define the ratio appropriate for the situation: the timescale at which the ratio applies is the one numerically dominating the numerator and denominator of the right hand side. The relationship also suggests why the ratio should be relatively insensitive to photolysis conditions and local OH radical concentrations, since short-wavelength photolysis and OH are thought to be closely interconnected (see Liu et al., 1992), who examine a low-OH hypothesis.

Observations

There is a small body of published data about the [HNO3]/[NO2] ratio. Figure 2 compares observations to some very basic theory described below. The figure summarizes observations from the CITE-2 aircraft sampling program (see above). The ratio of [HNO3]/[NO2] for the free troposphere varies widely from –0 to up to about 10 or so, with a central tendency near 4. These measurements over the Eastern North Pacific and the Continental US (which differed little) may all be taken to be random samples of the free troposphere. The measurements of CITE-2 probably tended somewhat to avoid very convective regions of rainout and recent emissions, so they were typically at least several hours reaction-time downslope of sources.

Figure 2 also shows a summary of complementary observations made over a month’s period at the Mauna Loa, Hawaii, observatory, at 3 km (a more stable operating environment). Details may be found in Carroll et al. [1997], Norton et al. [1992], and associated papers. The measurements shown were made in downslope air convincingly described as reflecting lower mid-tropospheric air very largely removed from surface influences. Periods with high inversion and local influence were treated separately (but often had relatively high ratios, 6–8!). Again, the average [HNO3]/[NO2] ratio is just over 4. The ratio also was seen to change slowly over days, on the timescale in which large-scale weather and composition change, not rapidly in response to nearby emissions. The rarity of convection during downslope conditions in the fair-
weather Eastern Pacific puts most of these measurements hours, days, or weeks downwind of new sources. Figure 2 shows that these ratios appear to average 10-40% of theory, and that low ratios should be associated with rapid ratio change, and hence, great ratio variability. The Arctic summer data of the ABLE-3a campaign are more complex to analyze, but Singh et al. [1993] and Pan et al. [1993] point out similar low ratios in the nitrogen budget in this region. The AASE-I data [Carroll et al., 1990] was also taken during the slow-photochemistry winter period, but fits in well with our discussion, and helps motivate it [Carroll et al., 1992]. Slow timescales complicate the analysis in darker, cooler regions of the troposphere (T < 250 K), and there could be effects on upper-tropospheric NO₂ from aircraft [Kasibhatla, 1993].

Could the instruments be measuring wrongly? Not wrongly enough, it appears. Only some brief comments appear appropriate here. Could NO₃ be measured too high? There is a complicating, necessary conversion step from NO₂ to NO in high sensitivity chemiluminescent and laser techniques [Gregory et al., 1990, and referenced work]. Our uncertainties regarding underconversion (e.g., incomplete NO₂ photolysis) and overconversion (e.g., conversion of abundant(?) nitric acid) are necessarily limited by the fast photochemical steady state (see below). NO₂ may or may not be in excess of the value implied by known theory [Ridley et al., 1992, Chameides et al., 1990, and referenced work], but even 100% excesses in NO₂ make only minor <50% changes to the observed [HNO₃]/[NO₂] ratio, and higher values of [NO₃]/[NO₂] in equation (1) also imply a higher theoretical value. Could HNO₃ be underestimated? Experimental concerns with NO₃ (all nitrogen which can interchange to become NO in the air or in a reducing converter instrument) or one of its presumed major constituents, HNO₃, concern on their removal surfaces prior to detection. To some extent the measurements of NO₂ and HNO₃ support each other due to the differences in the instruments. Measurements of HNO₃ are few, and often the discrepancy between theory and observations is large, as in the CITF-3 and AASE-2 measurements currently under analysis. It can be worthwhile to constrain [HNO₃]/[NO₂], the “N oxidation ratio,” using [NO₂]/[NO₃], the “active nitrogen ratio.”

\[
\frac{[\text{HNO}_3]}{[\text{NO}_2]} = \frac{([\text{NO}_3] - [\text{NO}_2])_{\text{PAN}} - \ldots}{[\text{NO}_2]} < \frac{([\text{NO}_3] - [\text{NO}_2])_{\text{PAN}}}{[\text{NO}_2]} = \left(\frac{[\text{HNO}_3]}{[\text{NO}_2]} - 1 \right)
\]

It should be possible to improve the HNO₃ estimate significantly by correcting the NO₂ above for peroxyacetyl nitrate calculated using NO₂-PAN must be corrected by measurements when T < 5°C, where it is determined by transport. In the Mauna Loa situation, [NO₃] - [NO₂] - [PAN] is highly correlated with measured [HNO₃], but is a bit higher, if that difference represents actual HNO₃, the average ratio rises to ~6, still a very low value [Carroll et al., 1992; Norton et al., 1992].

Discussion: Fast Cycles, Actual and Simulated

Fast-Cycles? In addition to equation (1), there is a budget equation for NO₂ and HNO₃ (see again Figure 1).

\[
S = r \cdot [\text{HNO}_3]
\]

This equation should be valid for data averaged over times comparable to emission/uptake times for nitrogen; its simplicity makes applications requiring averaging simpler. It reminds us that explanations for the N oxidation ratio which deal with S, the source rate of nitrogen to the system imply controlling effects for the sink, and vice versa. For example, an explanation which describes some ubiquitous sources of NO₃ to raise [NO₂] must imply an acceleration of the nitrogen cycle and a larger sink, due either to proportionally higher [HNO₃] (which consequently doesn’t solve the N oxidation ratio condition), or a faster removal rate. This will be called the “fast-cycle” (candidate) explanation. Other reservoirs of nitrogen like PAN or nitric acid aerosols can only partially perturb either (1) or (3) when they interchange at the same one-half-to-three day timescale and when the contents of the reservoir change significantly. In particular, small reservoirs will empty rapidly and cannot explain persistent, widespread deviations from the theoretical ratio described. Peroxyacetyl nitrate (PAN) forms a major constituent of the tropospheric nitrogen budget in the Arctic, and this complicates any analysis of ABLE-3 [Singh et al., 1992; Pan et al., 1993]. Its inclusion had little effect on our calculations of the N oxidation ratio, although it sometimes altered the ratio [HNO₃]/[NO₂].

What do the clocks imply? Hydrogen peroxide could provide an alternative chemical clock marking time since the last cloud event (Figure 2). During MIJOFEX it was observed in rainout to near-zero values in air cleansed by precipitating clouds; thus, these clouds apparently lowered the values [Heikes, 1992]. The 0.1–0.8 ppb levels of hydrogen peroxide observed by Heikes would suggest that most of the air had passed through a cloud event 0.5–4 days before. Mean peroxide values of 1 ppb would correspond to about 1.5 days since a cloud event. It is a problem that simulations suggest higher peroxide values than observed [Liu et al., 1992]. However, H₂O₂ has well known activity in the liquid phase, and if it mostly oxidizes compounds like SO₂ rapidly, this might be invoked to explain low observed values. Both the N oxidation ratio and the hydrogen peroxide shown in Figure 2 seem to argue for a 1.5-day residence time for nitric acid and peroxides against complete washout, but a little longer in the upper troposphere. This “fast-cycling” timescale is extremely short compared to the mean times in the literature and the Eastern Pacific was not a particularly rainy area during sampling. Giorgi and Chameides [1986] suggest rainout lifetimes of 5 days for the lower free troposphere up to 6 kilometers, rising to 15 days at 8.5 km. Balkanski et al. [1993] suggest an average of 15 days at 30 N, much longer than the 5 days they infer at 50 N. Also, as Stewart et al. [1989] show, the NOX climatologies of the troposphere have a complex relationship to averaged rainout lifetimes; specifically longer dry periods tend to give high average [HNO₃]/[NO₂] ratios. In sum, it appears that rapid HNO₃ removal is possible but not attractive explanation for the low N oxidation ratio.

Are there misrepresentations in models assessing tropospheric oxidizing capacity? Taken together, equations (1) and (3) make it clear that all one-, two-, and three-dimensional models that are run with simulated spatially averaged or continuous sources of NO₂ are including a term that spuriously pressurize their [HNO₃]/[NO₂] ratios toward observed values. Sources are usually simulated as continuous, even in 3-d models, when the actual occurrence or statistics of occurrence of sources, e.g., of lightning, aircraft emissions, cloud venting, etc., are either unknown or inconveniently complex and expensive to simulate. Often, these are paired with continuous sinks e.g., “rainout lifetimes,” which can be evaluated in (1) using lug bag relation (3). One example of the large and pernicious effects of the model errors in the simulation of continuous emissions and cloud venting, effects on the simulated ozone budget, was demonstrated in Chatfield and Delany [1990]. These simulation errors need quantification. Clearly, there are ramifications for the sensitivity of correctly modeled global OH and ozone levels to increasing nitrogen inputs to the region above the boundary layer. If there is currently a fast cycle, that implies that additional NO₃ should somehow also be lost quickly. Conversely, re-NO₃-ification explanations suggests that any new active nitrogen should have increased persistence and effects, and these now deserve some brief consideration.

Re-NO₃-ification?

In addition to the very slow re-NO₃-ification processed described in current-theory section, above, there are fascinating and little-explored processes that could explain the frequency of low oxidation ratios in the mid-troposphere. For example, formaldehyde could act as a sink to form HNO₃ as well as other components (Khalil, 1980), and we see, for example, NO₃ and nitric acid dissolved in clouds (Walker, 1965). And the di-nitrate form has been mentioned by Fan et al. [1994]. If this were a major reaction, there should be large
amounts of organic nitrate which have not been observed [Atlas et al., 1992]. Another reaction of formaldehyde and nitric acid in solution makes formic acid and reduced nitrogen, HONO or NO and NO₂. Horváth, et al. [1988] described one mechanism and rate for this redox reaction, which required [H⁺], [HNO₂], and some trace catalytic amount of reduced nitrogen in the same solution. Rate and mechanim information are hardly complete and trace catalysts can play important role. [Horváth and Epstein, 1989].

We propose that conditions favoring an autocatalytic reaction might occur in background nitrate aerosol [Norton et al., 1992], high-humidity sulfate aerosols, or in non-precipitating cloud particles. All of these are much more ubiquitously present in the mid-troposphere than the rainout processes discussed above. Atmospheric parcels tend to oscillate a kilometer or so within tropospheric clouds, especially outside the equatorial belt. Allowing nearby-precipitating high humidities and clouds. Indeed, the organic nitrate products may serve to preconcentrate reactants for the redox reaction, e.g., in a nitrate aerosol particle incorporating ambient sulfuric acid by coagulation or from the gas phase. Simple computer simulations of the effect of such reactions have been made using hypothesized aerosol-transformation rates on the gas-phase chemistry. As one might expect, these easily reproduce the observed [HNO₂]/[NO₂] ratios observed at Mauna Loa and produce several hundred ppt of formic acid which tends to bring the reaction closer to observations [Norton, 1999] as compared to the NO concentration observed. The formic acid observed may be considered a tracer of nitric acid which has been reduced; interpretations based on this tracer, which is itself reactive, may help reconcile the observed [HNO₂]/[NO₂] ratio to photochemical theory.

Summary and Conclusions

The ratio of measured [HNO₂]/[NO₂] is 0.25-0.5 of the values simulated using currently accepted theory. Simulations used to explain the present and future atmosphere will tend to get [HNO₂] or [NO₂] oft. We have applied ratio and budget conditions which can characterize suggested solutions to this problem. If the observed nitrogen ratios are explained by a fast-cycle (pervasive-source) process, then the N cycle must be giving more N removal than current theoretical assessments suggest. Current averaged models of global chemistry contain a numerical effect similar to such a pervasive source. Liquid-phase reactions of HNO₂ and HCHO in aerosol or cloud droplets could conceivably be active enough to allow tropospheric re-N₂-irradiation and perhaps also contribute to the observed levels of formic acid and NO₂.

Acknowledgments

The author particularly thanks Brian Ridley and Harviant Singh for encouragement and discussions, as well as Daniel Jacobs, Susha Madrinnich, John Vastano, and James Wallace. This research was also aided by Jack Kaye under NASA Research Program 579-24-13-10. This paper owes much to deserving work that could not be cited.

References

