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1 ABSTRACT 

We propose to become members of the NPOESS Preparatory Project (NPP) Science Team. NPP 
provides a “bridge” between the EOS Terra and Aqua missions and the NPOESS first operational 
satellite, currently planned for initial launch in the 2009 timeframe. The NPOESS and NPP data 
products are known as Environmental Data Records (EDRs), and – if suitable for long-term climate 
studies – Climate Data Records (CDRs).  
Our expertise is highly relevant for the Visible Infrared Imaging Radiometer Suite (VIIRS) and the 
Ozone Mapping and Profiler Suite (OMPS) aboard the NPP platform. Our competency (as evidenced by 
our previous published research) will be highly valuable for the assessment of several planned NPP 
Environmental Data Records (EDRs) and their adequacy as equivalent Climate Data Records (CDRs). 
These Records are: aerosol optical thickness, aerosol particle size parameter, suspended matter, ozone 
total column, and precipitable water. 
Our contributions to the NPP science team during the pre-launch phase will be 

a) The scientific support of algorithm development 
Many of the VIIRS solar reflective channel wavelengths either match exactly or are close to the Ames 
Airborne Tracking 14-channel Sunphotometer (AATS-14) wavelengths. Hence the AATS-14 algorithm 
work and its previous validation (see below) are of key importance for VIIRS. Our in-depth knowledge 
of algorithms and data to retrieve ozone in the UV and visible and water vapor in the near-infrared will 
be extremely valuable for the assessment of the ozone total column and precipitable water EDRs. 
b) The further development of the NPP Calibration-Validation Plan.  

We expect to be instrumental in the planning of coordinated measurement campaigns as set out in the 
Cal/Val plan. We have played scientific and organizational lead roles in numerous such campaigns. 

After launch we propose that our team’s expertise and instruments be a major part of the NPP 
calibration and validation effort. 
The PI (Dr. Schmid) and Co-I’s (Drs. Redemann and Russell) of this proposal have vast experience in 
the derivation, validation and improvements of EDRs and CDRs from orbital and sub-orbital platforms. 
We have employed an array of in-situ and remote sensing methods to measure aerosol optical properties, 
water vapor and ozone. We have emphasized the use of airborne sunphotometry as a unique link 
between space-based retrievals and a diversity of suborbital measurements.  
To this end we have built two Ames Airborne Tracking Sunphotometers (AATS-6 and AATS-14) and 
operated them in numerous large field campaigns since 1985. Through these experiments the AATS 
team has made significant contributions to the airborne study of atmospheric aerosols. The AATS 
instruments’ measurements of aerosol optical depth are used frequently in closure studies to investigate 
the ability of airborne in situ measurements of aerosol properties to predict measured attenuation of 
solar radiation. They have also been compared frequently to results from ground-based and airborne 
lidars. Most recently the airborne AATS observations have been used to evaluate the performance of 
aerosol transport models. Of most relevance to this proposal is that the AATS data have been used 
extensively in the validation of satellite sensors. At the time of writing this validation work is reported 
in 12 publications, validating 11 satellite sensors using data from 7 international field campaigns. The 
efforts of the AATS team have provided important aerosol information used in the revision of retrieval 
algorithms for the MISR and MODIS sensors aboard the NASA EOS Terra platform. 
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2 BACKGROUND AND RATIONALE  

Some key measurement series initiated with the Earth Observing System’s Terra and Aqua missions will 
be continued by the satellites and sensors of the NPOESS. NPP provides a “bridge” between the EOS 
Terra and Aqua missions and the NPOESS first operational satellite, currently planned for initial launch 
in the 2009 timeframe. The NPP mission is planned for launch in the 2007 time frame. At least four 
sensors will be flown on the NPP mission: the Visible Infrared Imaging Radiometer Suite (VIIRS), the 
Cross-track Infrared Sounder (CrIS), the Advanced Technology Microwave Sounder (ATMS), and the 
Ozone Mapping and Profiler Suite (OMPS). There is a possibility that a fifth sensor, the Clouds and the 
Earth's Radiant Energy System (CERES), may be added. 
The derived products from NPP will include: land, ocean and atmospheric products. The NPOESS data 
products are known as Environmental Data Records (EDRs). It is NASA’s intent to assure that these 
EDRs are also suitable for long-term climate studies. Following the nomenclature of the National 
Academy of Sciences these climate products will be called Climate Data Records (CDRs). 
In what follows we demonstrate that our expertise (as evidenced by our previous research) is highly 
relevant for the assessment of planned Environmental Data Records (EDRs) and their adequacy as 
equivalent Climate Data Records (CDRs). We propose to become members of the NPOESS Preparatory 
Project (NPP) Science Team. Our expertise is relevant for the NPP VIIRS and OMPS instruments and 
for the following Atmospheric EDRs: aerosol optical thickness, aerosol particle size parameter, 
suspended matter, ozone total column, precipitable water. (As noted by the NRA, suspended matter 
includes, e.g., dust, sand, volcanic ash, sea salt, and smoke.) 
 
3 INVESTIGATORS’ EXPERTISE RELEVANT TO THIS PROPOSAL 

The PI (Dr. Schmid) and Co-I’s (Drs. Redemann and Russell) of this proposal have vast experience in 
the derivation, validation and improvements of EDRs from orbital and sub-orbital platforms: 
Dr. Russell has been involved in atmospheric science since 1971, conducting aircraft, satellite and 
ground-based studies of atmospheric processes and climate change. Among the methods he employed 
are lidar measurements and simulations [e.g. Russell et al., 1976, 1979, 1982a,b, 1983b; Russell and 
Livingston, 1984], sodar (acoustic radar) [e.g. Russell et al., 1974; Russell and Uthe, 1978], and 
radiometry (including sun photometry) [e.g. Russell and Shaw, 1975; Russell et al., 1993a]. 
Dr. Russell has been a member of the science teams for SAM II, SAGE, SAGE II and SAGE III 
(satellite sensors of stratospheric aerosols, ozone, nitrogen dioxide, and water vapor) from 1976-2002 
[e.g. Russell et al., 1981, 1983a, 1984; Russell and McCormick, 1989]. Hence he has considerable first 
hand experience in activities expected to be performed by NPP science team members, such as review 
and preparation of sensor and algorithm documents, conduct of data simulation studies, development of 
calibration-validation plans, etc. (see section 5 of this proposal). Dr. Russell initiated and guided a study 
that developed a stratospheric aerosol climatology from SAGE II and CLAES measurements [Baumann 
et al., 2003a and b], which represents a successful example of converting an EDR into a CDR (see 
section 4.2). 
In 1984, Dr. Russell started the development of the first of two airborne sunphotometers: the 6-channel 
NASA Ames Airborne Tracking Sunphotometer (AATS-6), which flew its first mission in 1985 
[Matsumoto et al., 1987]. Subsequently AATS-6 has flown on a variety of aircraft, including the NASA 
CV-990, C-130, and DC-8, the Sandia National Laboratories Twin Otter, and the University of 
Washington C-131A focusing on measurements of aerosol optical depth (λ=380-1020 nm). These 
measurements have been compared with SAGE II measurements of free-tropospheric and stratospheric 
aerosols [Russell et al., 1986; Livingston and Russell, 1989] and used to characterize the spectral optical 



depth of oil- and forest-fire smokes and cirrus clouds [Pueschel et al., 1988; Pueschel and Livingston, 
1990], to measure tropospheric haze aerosols and their impact on atmospheric radiation and on remote 
measurements of the Earth's surface [Spanner et al., 1990; Wrigley et al., 1992; Russell et al., 1999b], 
and to document the effect of the 1991 Pinatubo volcanic eruption on global-scale stratospheric aerosol 
optical depth spectra [Russell et al., 1993a,b; 1996; Toon et al., 1993]. 
In 1993, Dr. Russell started the development of the 14-channel NASA Ames Airborne Tracking 
Sunphotometer (AATS-14, initially λ=380-1558 nm). AATS-14 made its first science flights on the 
Pelican (modified Cessna) aircraft of the Center for Interdisciplinary Remotely Piloted Aircraft Studies 
(CIRPAS) during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) in 
July 1996 [Russell et al., 1999a]. Dr. Russell was IGAC coordinator for TARFOX, where AATS-6 was 
flown on the University of Washington C-131A, hence marking the first experiment with two airborne 
sunphotometers [Russell et al., 1999b]. 
Before joining the NASA Ames Airborne Sunphotometer Team (AATS) in 1997, Dr. Schmid worked 
with NOAA/AVHRR data (from 1989 to 1991) monitoring vegetation growth in Switzerland [Schmid et 
al., 1991]. The VIIRS instrument on NPP is based in part on the heritage of the AVHRR instruments.  
In 1992 Dr. Schmid started working in the field of ground-based sunphotometry using state-of-the art 
instrumentation developed at the World Radiation Center in Davos, Switzerland [Fröhlich et al., 1995]. 
He published on refined techniques to retrieve aerosol optical depth, aerosol particle size distribution 
[Schmid et al., 1997], and columnar water [Schmid et al., 1996] from the direct solar beam transmission 
measurements a sunphotometer provides. Comparing the traditional Langley plot technique with the 
standard lamp/solar spectrum technique in two studies [Schmid and Wehrli 1995, Schmid et al., 1998], 
Dr. Schmid became an expert in radiometric calibration of solar instrumentation. After leaving the 
University of Bern and joining the AATS team, Dr. Schmid remained involved in sunphotometer 
algorithm work in Bern now conducted by Dr. Ingold [Ingold et al., 2000, 2001b], and which now also 
included determination of total ozone from transmission measurements in the UV [Ingold et al., 2001a]. 
As further discussed in section 5, this algorithm work is of high relevance for NPP. 
Dr. Schmid added the aforementioned additional expertise in sunphotometry to the AATS team. The 
capability to retrieve columnar water vapor (CWV) and ozone from the AATS measurements was 
added. The CWV retrieval was thoroughly tested by operating AATS-6 on the ground during two Dept. 
of Energy ARM program [Ackerman and Stokes, 2003] water vapor intercomparison experiments in 
1997 and 2000 [Schmid et al., 2001; Revercomb et al., 2003]. During the 1997 campaign, Dr. Schmid 
also led a sunphotometer intercomparison comparing AOD and CWV from 5 different instruments 
[Schmid et al., 1999]. 
The Second Aerosol Characterization Experiment (ACE-2) in 1997 [Russell and Heintzenberg, 2000] 
was Dr. Schmid’s first contact with airborne sunphotometry. AATS-14 was again flown on the Pelican 
aircraft, whereas AATS-6 operated successfully on a research ship. The AATS instruments conducted 
measurements of marine, European, and African aerosol optical depth spectra, as well as water vapor 
columns [e.g. Livingston et al., 2000, Schmid et al., 2000]. Using ACE-2 data, Dr. Schmid also 
pioneered the method of deriving spectral aerosol extinction Ea(λ) and water vapor density ρw by 
differentiating AATS vertical profiles of AOD and CWV. An example obtained in a later campaign, 
ACE-Asia, is shown in section 4.5. 
Dr. Redemann joined the AATS team in 1999. His previous expertise in aerosol research included in-
situ, lidar and sunphotometer data [Redemann et al., 1998; 2000a; 2000b], further strengthening the 
AATS team. He is currently funded to perform validation of the MODIS 2.1µm channel AOD product 
over the ocean, an endeavor that depends largely on the airborne capabilities and spectral coverage of 
the AATS-14 instrument (see section 4.3.2). 
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The AATS team then participated in a series of large field experiments: the Puerto Rico Dust 
Experiment (PRIDE, 2000), the Southern African Regional Science Initiative (SAFARI-2000), the 
Asian-Pacific Aerosol Characterization Experiment (ACE-Asia, 2001), the Chesapeake Lighthouse & 
Aircraft Measurements for Satellites (CLAMS, 2001) and most recently the second SAGE III Ozone 
Loss Validation Experiment (SOLVE-2, 2003). 
Through these experiments the AATS team has made significant contributions to the airborne study of 
atmospheric aerosols [e.g. Livingston et al., 2003, Schmid et al., 2003, Redemann et al., 2001]. The 
AATS instruments’ measurements of aerosol optical depth are used frequently in closure studies to 
investigate the ability of airborne in situ measurements of aerosol properties to predict measured 
attenuation of solar radiation.  [Hegg et al., 1997, Hartley et al., 2000, Collins et al., 2000, Schmid et al., 
2000, Wang et al., 2002, Magi et al., 2003, Schmid et al., 2002, Redemann et al., 2003]. They have also 
been compared frequently to results from ground-based and airborne lidars [e.g. Ferrare et al., 2000, 
Schmid et al. 2000; 2002; 2003] and most recently the airborne AATS observations have been used to 
evaluate the performance of aerosol transport models [Chin and Ginoux, 2002, Colarco et al., 2003]. 
The validation of such transport models is a crucial step in assessing these models’ capabilities in 
predicting future climate change. 
Of most relevance to this proposal is that the AATS data have been used extensively in the validation of 
satellite sensors. The TARFOX measurements mark the beginning of a series of publications on that 
subject. At the time of writing, the series includes 12 publications, validating 11 satellite sensors using 
data from 7 international field campaigns (see Table 1). As we will show the efforts of the AATS team 
have provided important aerosol information used in the revision of retrieval algorithms for the MISR 
and MODIS sensors aboard the NASA EOS Terra platform [Schmid et al., 2003, Livingston et al., 2003, 
Levy et al., 2002]. 
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Table 1: Validation of satellite derived spectral AOD published by the PI and Co-I’s of this proposal. 
 
 
Sensor Campaign Region Surface Period Publication 
AVHRR TARFOX US East 

Coast 
Ocean July 1996 Veefkind et al., 1999 

AVHRR ACE 2 Canary 
Islands 

Ocean June/July 
1997 

Durkee et al., 2000 
Livingston et al., 2000 
Schmid et al., 2000 

ATSR-2 TARFOX US East 
Coast 

Ocean July 1996 Veefkind et al., 1999 

ATSR-2 SAFARI 
2000 

Namibian 
Coast 

Ocean September 
2000 

Schmid et al., 2003 

GMS-5 ACE-Asia Eastern 
Asia 

Ocean April 2001 Wang et al, 2003b 

GOES-8 PRIDE Puerto 
Rico 

Ocean June/July 
2000 

Livingston et al., 2003 
Wang et al., 2003a 

MAS TARFOX US East 
Coast 

Ocean July 1996 Tanré et al. 1999 

MISR SAFARI-
2000 

Southern 
Africa 

Ocean & 
Land 

September 
2000 

Schmid et al., 2003 

MISR ACE-Asia Eastern 
Asia 

Ocean April 2001 Kahn et al., 2003 

MISR CLAMS US East 
Coast 

Ocean July/August 
2001 

Redemann et al., 2001 

MODIS PRIDE Puerto 
Rico 

Ocean June/July 
2000 

Livingston et al., 2003 
Levy et al., 2003 

MODIS SAFARI-
2000 

Southern 
Africa 

Ocean & 
Land 

September 
2000 

Schmid et al., 2003 

MODIS CLAMS US East 
Coast 

Ocean July/August 
2001 

Levy et al., 2002 

MODIS ACE-Asia Eastern 
Asia 

Ocean April 2001 Chu et al., in prep. 

POAM SOLVE-2 Arctic Ocean & 
Land 

Jan/Feb 
2003 

in prep. 

SAGE 3 SOLVE-2 Arctic Ocean & 
Land 

Jan/Feb 
2003 

in prep. 

SeaWiFS ACE-Asia Eastern 
Asia 

Ocean April 2001 Hsu et al, in prep. 

TOMS PRIDE Puerto 
Rico 

Ocean June/July 
2000 

Livingston et al., 2003 

TOMS SAFARI-
2000 

Southern 
Africa 

Land September 
2000 

Schmid et al., 2003 

 
 
 

   5



4 EXAMPLE RESEARCH RESULTS RELEVANT TO THIS PROPOSAL 
4.1 Scientific Motivation 

Figure 1 and Figure 2 show schematically the scientific motivation and overall approach used in the 
AATS team’s research. As indicated by Figure 1, aerosols produced by biomass burning, desert dust 
storms, urban pollution, and other processes form features recognizable from space on regional to 
intercontinental scales [e.g., Husar et al., 1997; Kaufman et al., 2002; Prospero et al., 2002]. These 
aerosols can change the climate by perturbing energy exchange between the sun, Earth, and space, as 
well as by redistributing energy within the atmosphere. Two gas-phase constituents, water vapor and 
ozone, are also relevant, because they interact with aerosols both chemically and physically, and they 
are themselves major players in the Earth’s radiation budget. All three constituents—aerosols, water 
vapor, and ozone—can be retrieved quantitatively from spaceborne measurements. However retrieval 
accuracy is still being determined, because it depends strongly on constituent type, measurement 
conditions (e.g., over land vs. water, in or out of sun glint, in or out of cirrus or other cloud fields), and 
spaceborne measurement technique (e.g., multiangle, multiwavelength, polarization, nadir- vs. limb-
viewing, passive vs. active, etc.). 
The three constituent types can also be measured by airborne sunphotometry. We have emphasized the 
use of airborne sunphotometry as a unique link between space-based retrievals and a diversity of 
suborbital measurements. Figure 2 illustrates the coordination of satellite and suborbital measurements 
used in the field studies listed in Table 1. 
In the remainder of this section we show illustrative results, relevant to the tasks of the NPP science 
team. 
 

 
Figure 1: Schematic of the scientific motivation and overall approach used in the AATS team’s research. 
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Figure 2: Schematic of the approach used in field experiments that coordinate a variety of suborbital 
measurements, including airborne sunphotometry, with satellite overflights. Example of size-resolved 
composition data is from Wang et al. [2002]. Electron microscope (EM) image of particles is courtesy of James 
Anderson, Arizona State University.  EM image is 7 µm wide. 

 
4.2 Stratospheric Aerosol Climatology from SAGE II and CLAES 

As part of our work on the SAGE II Science Team we have guided the development of a stratospheric 
aerosol climatology.  The climatology was produced by an algorithm that uses extinction measurements 
by SAGE II and CLAES. The algorithm uses the 4-wavelength SAGE II extinction measurements 
(0.385 to 1.02 µm) over the full period of the climatology (~15 years, 12/1984-8/1999) and adds CLAES 
12.82 µm extinction measurements during the critical post-Pinatubo volcanic period when stratospheric 
aerosol radii were largest (January 1992 to May 1993). The climatology includes stratospheric aerosol 
multiwavelength extinction and optical depth, plus retrieved values and uncertainties for particle 
effective radius Reff, surface area S, volume V, and size distribution width σg. Examples from this 
climatology published by Baumann et al., [2003a and b] are shown in Figure 3 and Figure 4. The effect 
of the volcanic eruptions of Ruiz (Nov. 1985), Kelut (Feb. 1990) and Pinatubo (June 1991) is easily 
discerned. 
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Figure 3: Seasonally averaged surface area of stratospheric aerosol CDR from Winter 1984 to Fall 1989, derived 
from SAGE II and CLAES EDRs [Bauman et al. 2003a]. Red triangle in the Fall 85 frame marks the latitude of 
the November 1985 Kelut eruption. 
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Figure 4: Seasonally averaged surface area of stratospheric aerosol CDR from Winter 1989 to Fall 1994, derived 
from SAGE II and CLAES EDRs [Bauman et al. 2003a].  Red triangles in the Winter 89 and Summer 91 frames 
mark latitudes of the February 1990 Kelut and Summer 1991 Pinatubo and Hudson eruptions. 
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4.3 Validation of Satellite Aerosol Optical Depth 

During various field experiments (see Table 1) considerable effort was devoted to coordinating aircraft 
measurements with satellite overpasses. The aircraft measurements include aerosol optical depth spectra 
measured by an existing Ames Airborne Tracking Sunphotometer (AATS-14 or AATS-6). When 
measured on transects flown near the land or ocean surface, such optical depth spectra are useful for 
validating products from the satellite sensors. To date the AATS team has contributed to the validation 
of 11 satellite sensors using data from 7 international field campaigns (see Table 1). This section 
presents examples of such validation. 

4.3.1 MODIS Dust Retrievals in PRIDE. 
Figure 5 shows a scatter plot comparing aerosol optical depths (AOD) at four wavelengths, as retrieved 
by MODIS and as measured by AATS-6 flying near the ocean surface in the MODIS scene. All 
measurements were made in the Puerto Rico Dust Experiment (PRIDE). Data points with AOD>0.2 are 
from conditions dominated by Saharan dust transported to the Caribbean [Reid et al., 2002, 2003].  For 
the cases with little or no dust (AOD<0.2), MODIS and AATS-6 values are within ~1 error bar of the 
1:1 line. In dust-dominated conditions (AOD>0.2), this is also true for AOD at wavelength 870 nm. 
However, at the shorter wavelengths, MODIS-retrieved AOD systematically exceeds the AATS-6 
values. Thus, in dust-dominated conditions the slope of AOD vs. wavelength is steeper in MODIS-
retrieved spectra than in AATS-6 spectra. This is shown explicitly in Figure 6, which plots the same 
data as spectra of AOD vs. wavelength. The likely cause of this slope difference is dust nonsphericity, 
which causes the MODIS retrieval to substitute more small mode aerosol for nonspherical large mode 
dust [Remer et al., 2002]. An updated MODIS algorithm that adds nonspherical phase functions is being 
developed to address this. 

 

Figure 5: Scatter plot comparing AODs retrieved by MODIS to those measured by AATS-6 in PRIDE [Livingston 
et al., 2003]. 
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Figure 6: MODIS and AATS spectra for the 7 cases in Figure 5 [Livingston et al., 2003].  
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4.3.2 MODIS Retrievals in SAFARI 2000 
In SAFARI-2000, AATS-14 measured aerosol optical depth spectra aboard the UW CV-580 in the 
vicinity of Inhaca Island, Mozambique on August 24, 2000. Figure 7 (left) shows the comparison of 
AATS-14-derived to MODIS-derived aerosol optical thickness [Schmid et al., 2003] as a function of 
wavelength.  
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Figure 7: Comparisons of AOD spectra measured by AATS-14 and MODIS-Terra in SAFARI-2000, Schmid et al. 
[2003]. 

Also shown in Figure 7 are the concurrent measurements of AOD by AERONET (a global network of 
ground-based sunpotometers, [Holben et al., 1998]). The AATS-14 measurements shown represent the 
first published validation efforts of MODIS-derived AODs at wavelengths beyond 1.02 µm. Based on 
these and similar comparisons involving biomass burning aerosol, the MODIS team adjusted the single 
scattering albedo in the MODIS inversion algorithm to account for regional and seasonal variations. The 
new inversion algorithm (labeled “MODIS ver4” in Figure 7, right panel) yields considerably better 
agreement with AERONET and AATS-14. 
Figure 7 (left panel) also illustrates the lack of validation of the longest MODIS wavelength channel at 
2.13 µm. We have recently modified AATS-14 to include a channel at 2.139 µm. First MODIS 
validation at that wavelength is expected to be obtained from AATS-14 in ADAM-2003 (Asian Dust 
Above Monterey), an experiment to study Asian dust transported across the Pacific Ocean to the US 
West Coast in April of 2003. 
 

4.3.3 MISR Retrievals in SAFARI 2000 
During SAFARI-2000, AATS-14 was instrumental in identifying problems in the initial standard MISR 
retrievals of aerosol optical depth.  Some of these problems were instrumental, while others pertained to 
the completeness of look-up tables used in the inversion of MISR radiance measurements to aerosol 
optical depth [Schmid et al., 2003]. As an illustration, the MISR AOD(λ) retrievals shown in Figure 8 
come from the “beta” version of the standard retrieval, which is an early post launch, unvalidated 
version of the algorithm. This retrieval is based on a list of prescribed aerosol mixture models. Each 
mixture is tested in terms of how well it reproduces the MISR-measured path radiances [Martonchik et 
al., 1998; Kahn et al., 2001]. Figure 8 shows the comparison of MISR retrieved AOD(λ) with AATS-14 
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during a low altitude pass of the Convair-580 within two adjacent 17.6×17.6 km2
 MISR regions off the 

Namibian Coast on September 11, 2000. In both regions, the “Clean Maritime” mixture (45% sulfate, 
40% sea salt and 15% sea salt coarse) leads to good agreement at 558 nm and 672 nm; however, the 
MISR-derived AOD spectrum is too flat. The “Industrial Maritime” mixture (70% sulfate, 10% sea salt, 
20% black carbon) leads to a spectral slope agreeing with AATS-14 but the MISR AOD values are then 
too high. The MISR algorithm finds a different best-fit mixture in the two adjacent regions, leading to a 
large change in best-fit AOD whereas AATS-14 indicates very little change in AOD.  
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Figure 8: Comparison of aerosol optical depth spectra in two adjacent MISR pixels off the coast of Namibia, 
during SAFARI-2000, [Schmid et al., 2003]. 

This spectral AOD comparison and others analyzed by the MISR team showed that a model including 
small, spherical, non-absorbing particles needed to be restored to the look-up tables used in MISR AOD 
retrievals. (It had been deleted early in the mission to reduce computer resource requirements.) 
 

4.3.4 MISR Retrievals in ACE-Asia 
MISR-AATS comparisons in ACE-Asia (not shown for brevity) confirmed that early MISR-derived 
AODs were skewed high for some low-light-level scenes.  Subsequent experiments demonstrated that 
scattered light played a key role in this phenomenon, and led to a revision of the MISR low-light-level 
calibration (that significantly affects MISR-derived AOD over dark water) (R. Kahn, personal 
communication).  
 

4.3.5 SeaWiFS Retrievals in ACE-Asia  
Comparisons (e.g., Figure 9) between AATS measurements and SeaWiFS retrieved AOD yield good 
agreement if the new 4-wavelength Hsu et al. [2002] algorithm is used, but disagreement if using the 
standard SeaWiFS algorithm.  
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Figure 9: Comparison of spectral aerosol optical depth on April 9, 12 and 14, 2001 between AATS-14 and 
SeaWiFS, using the new 4-wavelengths algorithm by Hsu et al. [2002]. 
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4.4 Comparison of columnar ozone from TOMS and AATS-14 during SOLVE-2 

The AATS team is using the signature of the O3 Chappuis-band (λ=450-800 nm, see Figure 13) to 
determine the columnar amount of O3 from the AATS-14 measurements applying a method pioneered 
by King and Byrne [1976]. We have experimented with other methods (i.e. Chu et al., 1989, Taha and 
Box, 1999) but found the King and Byrne method to be suited best. During SOLVE-2, on January 21, 
2003 the NASA DC-8 flew a transect from ~20°E to ~60°W. AATS-14 continuously measured the O3 
column above the plane which flew at an almost constant altitude of ~8 km a.s.l. In Figure 10 we 
compare the AATS-14 results with the retrievals from the TOMS satellite sensor. The O3 column shows 
considerable variation, which is captured by both sensors. At the locations with the best spatial match-
ups the TOMS values tend to be slightly larger, which is expected because the O3 column below the 
airplane is not measured by AATS-14. We plan to account for that by including data from a down-
looking O3 lidar aboard the DC-8 [Browell et al., 1990]. 

CClloosseesstt    
LLooccaattiioonn
ss     

Figure 10: Columnar O3 on January 21, 2003 from AATS-14 aboard NASA DC-8 and TOMS. Preliminary result. 
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4.5 AATS Aerosol and H2O vertical profiles and closure studies 

From AATS direct solar beam transmission measurements we derive spectral aerosol optical depths 
AOD(λ), columnar water vapor, CWV, and columnar ozone. Flying at different altitudes over a fixed 
location allows derivation of the same quantities in a given layer. Data obtained in vertical profiles 
allows derivation of spectral aerosol extinction Ea(λ) and water vapor density ρw (see Figure 11) 
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Figure 11: Top left: AOD profiles and derived extinctions 
at 13 wavelengths from 354 to 1558 nm calculated from 
AATS-14 measurements acquired during an aircraft 
ascent south of Korea on 17 April 2001 during ACE-
Asia.  Top right: Water vapor density derived from the 
profile of CWV. A comparison with a standard EdgeTech 
Chilled Mirror instrument is also shown. Bottom left: 
Comparison of aerosol extinction derived from AATS-14 
measurements, aerosol size and composition 
distributions, the sum of aerosol scattering 
(nephelometer) and absorption (PSAP), and ship-based 
lidar measurements [Schmid et al., 2002]. 

 

Measuring solar beam attenuation by an AATS on the same aircraft as in situ sensors allows a close 
match in the aerosol layers described by the attenuation and in situ measurements.  Such a match allows 
the best-defined comparison between attenuation and in situ results. An example from ACE-Asia where 
the in situ extinction is computed as the sum of scattering (from humidified nephelometry) and 
absorption (PSAP instrument) is shown in Figure 11. Also shown is a concurrently measured aerosol 
extinction profile derived from a ship-based lidar system and values calculated from Mie theory using 
measured size distributions and size-resolved composition (used to determine the complex refractive 
indices) [Wang et al., 2002].  Combining results from many such comparisons (usually called “closure 
studies”) has shown that extinction values from in-situ scattering and absorption measurements were 
~13% less than the values from AATS-14 [Schmid et al., 2003]. 
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4.6 AATS - AERONET comparisons 

Measurements by AATS-6 have been compared to measurements from ground-based Cimel 
sunphotometers during two DOE ARM IOPs, when AATS-6 was operated on the ground to enable side-
by-side comparisons of the instruments without concern about spatial homogeneity of the observed 
quantity. Figure 12 shows an example of a comparison of AATS-6 and Cimel derived CWV (columnar 
water vapor) and AOD (aerosol optical depth) at 380 and 1020 nm, respectively. These observations 
were taken during the 1997 ARM IOP at the SGP site in Oklahoma [Revercomb et al., 2003]. When 
using the same line-by-line model along with the same spectroscopic database in deriving CWV from 
the direct solar beam transmittance measured by AATS-6 and the Cimel instrument, Schmid et al. 
[2001] were able to show remarkable agreement (3%) in the two instruments’ observations. Schmid et 
al. [1999] further showed that the concurrent measurements of AOD in the spectral range of 380 to 1020 
nm determined from the two instruments agreed to within 0.012 (rms) or better. 
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Figure 12: Statistical comparison of CWV and AOD at 380 and 1020nm as observed by AATS-6 and a Cimel 
instrument during the 1997 Fall ARM IOP, Schmid et al. [1999, 2001]. 
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5 PLANNED ACTIVITIES AS NPP SCIENCE TEAM MEMBERS 

We propose to become members of the NPP Science Team. As demonstrated in the previous sections 
and evidenced in the peer-reviewed literature our expertise is relevant for the NPP sensors VIIRS and 
OMPS and for the following Atmospheric EDRs pertinent to NPP: 

aerosol optical thickness • 
• 
• 
• 
• 

• 

• 

• 
• 
• 
• 
• 

aerosol particle size parameter 
suspended matter (e.g., dust, sand, volcanic ash, sea salt, smoke) 
ozone total column 
precipitable water 

 
As spelled out in the NRA, NPP Science Team members will be expected to: 

Participate in about 4 technical interchange meetings and science team meetings per year at 
the NPOESS system contractor’s site, sensor vendor’s sites or NASA GSFC  
Review sensor and algorithm documents, algorithm code and system descriptions as 
appropriate 
Conduct data simulation studies as appropriate 
Prepare an algorithm analysis report and recommend algorithm improvement activities 
Participate in the preparation of a science operations concept document 
Support the further development of the NPP Calibration-Validation Plan 
Provide information to NASA on a variety of technical matters associated with NPP 
instruments and algorithms. 

 
We are convinced that we will contribute to all of the expected items listed above. Of particular 
importance are our expected contributions to the NPP Calibration-Validation activities. The draft NPP 
Calibration-Validation plan http://jointmission.gsfc.nasa.gov/science/calibration.html stresses the 
importance of using  

aircraft validation data • 
• 
• 

coordinated measurement campaigns. 
other satellite sensor data 

 
The plan states “Aircraft data is important to the program both before and after launch. Before launch, it 
provides the means to demonstrate expected product performance and to establish algorithm approaches 
that will work in the presence of actual environmental conditions. After launch, it is a major part of 
system validation” The document then lists a series of aircraft sensors (NAST, Scanning HIS, MAS, 
PSR, APMIR, MASTER and AVIRIS) as key components for performing product validation. We argue 
that the AATS-14 instrument should be part of this list. The wavelengths of AATS-14 were chosen to 
allow separation of aerosol, O3 and water vapor optical depth and at the same time measure AOD over a 
wide wavelength range (354-2139 nm) and determine the columnar amounts of O3 and water vapor. 
Figure 13 shows the VIIRS and AATS-14 channel wavelengths in relation to atmospheric spectra. Since 
the VIIRS channels were also selected to allow aerosol and O3 separation, many of its wavelengths 
either match exactly or are close to the AATS-14 wavelengths. Hence the AATS-14 algorithm work and 
its validation are of key importance for VIIRS. Before launch – as stated in the Cal/Val plan – “it 
provides the means to demonstrate expected product performance and to establish algorithm approaches 
that will work in the presence of actual environmental conditions.” After launch AATS-14 and the 
AATS team’s expertise will be a major part of system validation. 
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Figure 13: VIIRS (moderate resolution, solar reflective channels) and AATS-14 wavelengths (vertical lines with 
arrows) in relation to atmospheric spectra. The spectra of transmittance T of the direct solar beam at sea level 
were calculated using MODTRAN-4.3 with a Midlatitude Summer atmosphere, a rural spring-summer 
tropospheric aerosol model (Vis = 23 km), and the sun at the zenith. Current center wavelengths of AATS-14 are 
354, 380, 453, 499, 519, 604, 675, 778, 865, 941, 1019, 1241, 1558, 2139 nm. Filter full widths at half-maximum 
(FWHM) are 5 nm, except for the 353 and 2139 nm channels, which have FWHM 2 and 17 nm, respectively. 
VIIRS’ moderate resolution, solar reflective channels are centered at 412, 445, 488, 555, 672, 746, 865, 1240, 
1378, 1610, and 2250 nm, with FWHMs from 15-60 nm. 

As shown in Figure 13, VIIRS does not cover the UV region. However this is accomplished by the 
OMPS instrument on NPP. OMPS will collect total column and vertical profile ozone data and continue 
the daily global data produced by the current ozone monitoring systems, the Solar Backscatter 
Ultraviolet radiometer (SBUV/2) and Total Ozone Mapping Spectrometer (TOMS), but with higher 
fidelity. OMPS consists of a nadir mapper, nadir profiler and a limb profiler, providing continuous 
spectral coverage from 250-1000 nm. As demonstrated in the previous sections the PI of this proposal 
has in depth knowledge of algorithms and data to retrieve ozone using the UV Hartley-Huggins band or 
the Chappuis band in the visible (see Figure 13). 
The VIIRS precipitable water (PW equivalent to CWV in the absence of clouds) EDR will use five 
spectral bands in the infrared (3.7 µm, 4.05 µm, 8.55 µm, 10.76 µm, and 12.01 µm) for all retrievals. 
The CrIS and ATMS instrument on NPP will also produce PW EDRs. Validation of the PW EDRs is 
currently planned by comparing to AERONET and EOS (MODIS, AIRS/HSB) data. As NPP science 
team members we plan (in collaboration with the AERONET team) to upgrade the current AERONET 
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PW EDR which uses old H2O spectroscopic data. As shown in section 4.6, doing so for a limited data 
set yielded remarkable agreement between AATS-6 and AERONET. We expect airborne measurements 
with AATS-14 to play a role in the validation phase of the PW EDRs (e.g., measure PW above clouds 
and along transects spanning a range of conditions). 
We expect to contribute to the planning of coordinated measurement campaigns as set out in the Cal/Val 
plan. The AATS team has played lead roles in numerous such campaigns (e.g., TARFOX: P. Russell, 
lead scientist, ACE-2 CLEARCOLUMN: P. Russell co-lead scientist, ACE-Asia: P. Russell, radiation 
lead scientist, May 2003 ARM Aerosol IOP: B. Schmid, airborne measurements lead scientist).  In 
addition, P. Russell has played lead roles in the validation and algorithm development for SAGE II and 
III aerosol products. 
We also expect to contribute to the effort of using other satellite sensor data for NPP validation where, 
e.g., MODIS will serve as testbed for VIIRS algorithms. We are currently proposing the combined 
analysis of suborbital and satellite measurements of aerosol optical depth and columnar water vapor 
collected during recent field experiments, with the intent of joining the MODIS-Atmosphere Science 
Team and/or the MISR Science Team (NRA-03-OES-02). The proposed work is aimed at investigating 
the spatial variability in MODIS- and MISR-derived data products and assessing how well this 
variability is captured by satellite sensors and their data products. If funded, this research will greatly 
benefit this aspect of NPP validation.  
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