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I Background
   The NASA Ames airborne Sun photometry program has benefited in many ways from the work of John Reagan.  Our water vapor retrieval methods [1, 2] are based on methods published by Prof. Reagan [3, 4].  Designs for our existing instruments [5, 6] and advanced concepts [7] have been influenced by Prof. Reagan’s instruments and by his specialized consulting [8]. And our measurements of the Pinatubo volcanic stratospheric aerosol [9, 10] include corrections for diffuse light effects derived by Prof. Reagan and colleagues [11].
II Overview
   The work described here extends Sun photometric diffuse light correction methods to include conditions influenced by the large particles present in airborne desert dust and marine aerosols.  Features of the work include parametric equations that easily determine aerosol optical depth (AOD) correction factors from Ångström exponents of uncorrected AOD spectra. The parametric equations are derived from results of an analytical expression [12] that accounts for all orders of scattering. Aerosol scattering phase functions are derived from a representative range of dust and marine aerosols with realistic size distributions, compositions (or complex refractive indices), and shapes.  This aerosol information is obtained from a wide range of retrievals from the AERONET network of sun-sky radiometers, as well as airborne in situ measurements especially designed to account for large particles.  The formulation also accounts for realistic mixtures of scattering by the gaseous atmosphere and extinction by dust and marine aerosols.  This, along with the parametric equations that account for changing particle size, allows for practical application of the corrections to time series of AOD, including vertical profiles. The corrections have been applied to our archived data sets for studies of both African and Asian dust aerosols, where marine aerosols are also present in the boundary layer. (See, e.g., http://geo.arc.nasa.gov/sgg/ACE-Asia/data_plots_login_page.html.)
III Example Results
   Fig. 1 shows an example of applying the correction factors to vertical profiles of multiwavelength AOD acquired in conditions influenced by Asian desert dust. The derivation of the correction factors, and more extensive results, are given by [13].  In general, we find that the corrections are negligible (<~1% of AOD) for Sun photometers with narrow FOV (half-angle <~1°), but they can be as large as 10% of AOD at 354 nm wavelength for Sun photometers with =1.85°.
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Fig. 1. An example of applying the diffuse-light correction factors to vertical profiles of aerosol optical depth (AOD) measured in conditions affected by Asian desert dust. AOD(1020,1558) is the Ångström exponent of the overlying AOD, derived as a fit to uncorrected AOD at wavelengths from 1020 to 1558 nm. Ca is the correction factor, AOD/AOD’, where AOD’ is apparent (i.e., uncorrected) AOD. Results are for photometer field-of-view half-angle =1.85°, which applies to the 6- and 14-channel NASA Ames Airborne Tracking Sunphotometers.
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