
5. Aerosol Parameters and Classes Used in Our Current Classification Method (cont’d) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

6. Application to PARASOL Retrieved Aerosol Parameters 

Summary and Conclusions 
 Specified clustering and Mahalanobis classification together provide a useful way of combining several dimensions of opto-physical information to assign aerosols to classes. 
 The Wilks’ lambda statistics (overall and partial) are useful in judging the separability of aerosol classes, and which dimensions (parameters) contribute most to class 

separability. 
 We have applied these methods to AERONET Version 2 data sets using the parameters: extinction angstrom exponent (EAE), absorption angstrom exponent (AAE), single 

scattering albedo (SSA), its wavelength dependence (dSSA), real and imaginary refractive index (RRI, IRI), and indicators of particle size (Volf/Volc) and shape (%Spheres). 
 Using these 8 AERONET-retrieved parameters, we assign aerosols to 6 classes: UrbInd, DevUrb (urban-industrial for developed and developing economies), BioBurn-Ama, 

BioBurn-Afr (biomass burning for Amazonian (less absorbing) and African Savanna (more absorbing) smoke), mineral Dust, and Marine. This classification is useful in showing 
how aerosol type varies from month to month and site to site. 

 In applying the method to PARASOL-retrieved parameters, retrieval uncertainty is critical in choosing which parameters and data points to include. We have used the method 
with PARASOL-retrieved EAE, SSA, RRI, and dSSA to assign aerosols at FORTH-Crete to the classes UrbInd, DevUrb, Dust, BioBorn-Ama, and Marine. 

Next Steps 
 Include other AERONET sites in the Dust cluster, to make the class more generally representative.  Investigate this for the UrbInd, DevUrb, and other classes, too. 
 Investigate use of fine-mode fraction of AOD(λ) as an input parameter. 
 Apply the classification to a larger PARASOL data set, including larger AOD values, and hence smaller retrieval uncertainties, possibly allowing use of more parameters. 
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Specified clustering (e.g., Moussiades and Vakali, 2009) uses 
“a priori” information in a “reference” data set to assign points 
to clusters. This a priori information can include information 
(e.g., trajectory or chemical analyses or previous studies) 
beyond the optical parameters that will be available to the 
classification method in the general case. In Fig. 3, a 2-
dimensional scatterplot of AAE440,870 vs EAE440,870, we have 
assigned AERONET Version 2 Level 2.0 retrieved data points  
to clusters (symbol colors) using the aerosol type designations 
of Dubovik et al. (2002) or Cattrall et al. (2005), which specify 
months during which certain aerosol types tend to dominate at 
certain sites. This is an example of specified clustering.  
  Mahalanobis classification (Mahalanobis, 1936; Wikipedia, 
2010; Burton et al., 2012) assigns any given N-dimensional 
point (x1,x2,…,xN )T to the cluster that has minimum 
Mahalanobis distance, DM, from that point. For purposes of 
defining DM, a cluster is defined by its mean (µ1,µ2,…,µN )T and 
its covariance matrix S. In N dimensions, 

     (4) 
 

where the elements of S are given by 
(5) 

  

Abstract 
Over the past several decades, since the development of truly global aerosol measurements by satellites and AERONET, it has proven 
useful to classify observed aerosols into several major types (e.g., urban-industrial, biomass burning, mineral dust, maritime, and various 
subtypes or mixtures of these). Such classification can help to understand aerosol sources, effects, and feedback mechanisms, to improve 
accuracy of satellite retrievals and to quantify assessments of aerosol radiative impacts on climate. With ongoing improvements in 
measurement capability, the number of aerosol parameters retrieved from spaceborne and suborbital remote sensors has been growing, 
from the initial aerosol optical depth at one or a few wavelengths to an extensive list from a variety of sensors such as the AERONET 
surface-based sun-sky photometers, the PARASOL spaceborne polarimeter, the RSP airborne polarimeter, the new 4STAR airborne sun-sky 
spectrometer, and combinations of data from these sensors with data from the OMI spaceborne spectrograph, or vertically resolved data 
from the CALIOP spaceborne lidar and the HSRL airborne lidar. Examples of the various data products available from these sensors include 
complex refractive index, single scattering albedo (SSA), and depolarization of backscatter, each at several wavelengths; wavelength 
dependences of extinction, scattering, absorption, SSA, and backscatter; and several particle size and shape parameters. 
 

Making optimal use of these varied data products requires objective, multi-dimensional analysis methods. Our methods, analogous to those 
used with HSRL data, use Mahalanobis distance to assign any given multidimensional (i.e., multiparameter) observation to the pre-specified 
cluster (aerosol type) to which it is most similar. The pre-specified clusters are defined using AERONET-retrieved parameters for sites and 
months where a specific type of aerosol is known to dominate. These aerosol types include urban industrial (for both developed and 
developing economies), biomass burning (for both Amazonian and African Savanna smoke), mineral dust, and marine. Dimensions we 
currently use include extinction angstrom exponent, absorption angstrom exponent, single scattering albedo and its wavelength dependence, 
real and imaginary refractive index, and indicators of particle size and sphericity. We show example results including seasonal changes of 
aerosol type at AERONET stations and identification of aerosol type from PARASOL-retrieved aerosol parameters. 
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4. Multidimensional specified clustering and Mahalanobis 
classification 
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In some conditions aerosol type can be identified in imagery from 
space by tracing the aerosol back to its source (e.g., the individual 
plumes in Fig. 1a,c). In other cases (e.g., Fig. 1c) it is tempting to 
guess aerosol type based on aerosol location. However, this can 
lead to errors, as exemplified by Fig. 1d, in which Alaskan wildfire 
smoke, carried down the Mississippi Valley, along the Gulf Coast 
and up the Atlantic seaboard, caused a haze layer off New England, 
an area typically impacted by urban-industrial pollution.   
 

The goal of this research is to develop robust methods for 
identifying aerosol type from the opto-physical information 
retrievable from an individual image pixel or group of pixels used in 
a retrieval (see, e.g., the pixel groupings used by the PARASOL 
retrieval of Dubovik et al. (2011)). 

In Russell et al. (2010) we showed that correlations 
between aerosol type and aerosol optical parameters, 
which had previously been noted via radiometric 
measurements of aerosol layers (e.g., Bergstrom et al., 
2007), and via in situ measurements of aerosol volumes 
(e.g., Shinozuka et al., 2009), were also present in 
AERONET-retrieved parameters describing full aerosol 
vertical columns (as represented by the AERONET pre-
Version 1 data in Dubovik et al. (2002)). In particular, as 
illustrated in Fig. 2,  
● SSA spectra from three desert dust sites (red 
curves in Fig. 2a) have slopes opposite to those for four 
urban-industrial and four biomass burning sites (black 
and green curves). 
● Despite the variety of SSA spectral shapes in 
Fig. 2a, the corresponding curves in Fig. 2b of aerosol 
absorption optical depth (AAOD) are all nearly straight 
lines in the log-log plot. In other words, they have nearly 
constant absorption Angstrom exponent (AAE) 
● AAE is correlated with aerosol type (Fig. 2c), 
with AAE values near 1 (the theoretical value for black 
carbon) for AERONET-measured aerosol columns 
dominated by urban-industrial aerosol (black bars in Fig. 
2c), larger AAE values for biomass burning aerosols 
(green bars in Fig. 2c), and the largest AAE values for 
Sahara dust aerosols (red bars). 
In Russell et al. (2010) we also noted the overlap in AAE 
values 

;jiijijS σσρ=

σi is the standard deviation of xi  for all points in the cluster, and ρij is the correlation coefficient of xi and xj. In 2 dimensions, 
curves of constant DM are ellipses, several of which are shown in Fig. 3. When points in a class are multi-normally distributed, 
DM

2 belongs to a chi-square distribution; hence, the probability P(DM) of a point being closer than DM to the cluster mean can 
be easily obtained from standard chi-square tables. The legend of Fig. 3 shows the correspondence between DM and P(DM) for 
points and clusters with 2 dimensions. 
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Hasekamp et al. (2011) describe retrievals of aerosol properties from pixels viewed by the POLDER-3 polarimeter on the PARASOL spacecraft. Table 1 lists the properties 
retrieved by the Hasekamp algorithm, and Fig. 6 shows an example time series of retrieved SSA670 values for the location FORTH-Crete, compared to measurements by 
AERONET. Because of its location in the Eastern Mediterranean, FORTH-Crete can experience different aerosol types (including marine, desert dust, urban-industrial, and 
biomass burning) at different times. 
  

Fig. 7 shows results of applying our aerosol classification technique to a PARASOL data set from FORTH-Crete. First, points that satisfy the Sayer et al. (2012) criteria 
(0.1≤EAE≤1, AOD500<0.2), are classified as Marine. Then, remaining points that pass filters on retrieval uncertainty (δSSA490≤0.15, δEAE490,865 ≤1) are Mahalanobis-classified 
using 4 parameters (SSA490, EAE490,865, RRI670, dSSA490,865).  

5. Aerosol Parameters and Classes Used in Our Current 
Classification Method  We have also applied the procedures described above to showing how aerosol type 

varies with time at particular AERONET sites. More specifically, for each AERONET 
Version 2 Level 2.0 observation, we use the 8 parameters in Table 2 to compute DM to 
each of the prespecified classes in Table 3, and we assign the observation to the class 
from which it has least DM. (In certain cases we exclude certain parameters as being ill-
defined. For example, at island sites, for points (observations) satisfying the Sayer et al. 
(2012) “pure marine” filters AOD500<0.2 and 0.1≤EAE440,870≤1, we exclude AAE because 
absorption is too small for this parameter to be well defined.) Fig. 8 shows example results 
for FORTH-Crete, illustrating how aerosol types (including Marine, Dust, UrbInd, and 
BioBurn) are distributed over the full period 2003-2009 (in the pie chart) and by  

7. Application to Aerosol Variability at AERONET Sites 

We are currently using 8 parameters and 6 aerosol classes (specified clusters), as listed in Tables 2 and 3 and illustrated in Figs. 
4 and 5. The 8 parameters were chosen to help improve separation of classes, as measured by values of Wilks’ overall lambda 
statistic, both for all 6 classes and for the UrbInd and two BioBurn classes, which are particularly difficult to separate in many 
parameters (including the EAE440,870 and AAE440,870 of Fig. 3).  

Fig. 2. (a) Spectra 
of AERONET-
derived Single 
Scattering Albedo 
(SSA) from 
specific sites and 
seasons identified 
by Dubovik et al. 
(2002) as 
particular types. 
Black: 
Urban/Industrial or 
Mixed; Green: 
Biomass Burning; 
Red-Brown: 
Desert Dust. (b) 
Corresponding 
Aerosol 
Absorption Optical 
Depth (AAOD) 
spectra.  (c) 
Absorption 
Angstrom 
Exponent (AAE) 
values for the 
AAOD spectra in 
(b).  

Fig. 9. Example 
application of the 
monthly and annual 
aerosol classification 
shown in Fig. 8 to 
selected AERONET sites 
in North and South 
America, North Atlantic, 
Europe, Africa, and Asia.  

Fig. 8. Example application of 
our aerosol classification 
technique to AERONET 
retrievals at FORTH-Crete, 
showing % prevalence of 
different aerosol types over 
2003-2009 (pie chart) and how 
prevalence varies from month 
to month (column chart).  
 

Fig. 1. (a, b) 
Plumes of Sahara 
dust and wildfire 
smoke in MODIS 
imagery. (c) Image 
of a large-scale 
haze over the 
eastern US and 
western Atlantic. 
(d) Image of a 
large-scale haze 
over the same area 
as (c), which was 
traceable back to 
Alaska wildfires. 

3. Examples of parameters available 

Fig. 5. Two-dimensional scatter plot of the 6 aerosol classes (specified 
clusters) in Table 3. Classification uses the 8 parameters in Table 2. 

Fig. 6. Example time series of SSA670 retrieved from 
PARASOL polarimeter measurements at FORTH-Crete 
(solid line), compared to AERONET measurements (dashed 
line). [From Fig. 4 of Hasekamp et al., 2011] 

Fig. 4. Left axes: 
Box-and-whisker 
plots for the 8 
parameters in Table 
2 and the 6 aerosol 
classes (specified 
clusters) in Table 3. 
Central dot: 
median; Box: 25th 
to 75th %ile; 
Whiskers: 5th and 
95th %ile. Right 
axes: Number of 
data points in each 
specified cluster 
(class), shown as 
gray columns.   

Fig. 3. A 2-dimensional scatterplot of data from AERONET 
Version 2 retrievals at sites/months designated by 
Dubovik et al. (2002) or Cattrall et al. (2005) to be 
dominated by certain aerosol types. Abbreviated names of 
classes/ specified clusters (e.g., “DevUrb”) are defined in 
Table 3. 
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for some urban-industrial and biomass-burning sites (black and green bars in Fig. 2c), indicating that aerosol classification using AAE alone 
could lead to ambiguity. We showed that using a two-dimensional plot, of AAE vs EAE, reduced the ambiguity but did not eliminate it. And 
we suggested the use of other retrieved aerosol parameters in multidimensional analyses as a potential way to reduce remaining ambiguity. 

Shading for each location indicates wavelength pair 
(in nm) for AAE calculation. GSFC=Goddard Space 
Flight Center, Greenbelt, MD [Russell et al., 2010a]. 

month within that period (in the column chart). These results show some 
commonality with our classification results from PARASOL data in Fig. 7 for 
FORTH-Crete, although the data periods differ (April-September 2006 for the 
PARASOL data in Figs. 6-7, vs. all months 2003-2009 for the AERONET data 
in Fig. 8).  

 

Fig. 9 shows further examples of application of our classification procedure to a 
variety of AERONET sites at different global locations. 

To illustrate the variety of parameters available, Table 1 lists examples of aerosol data products produced by selected 
spaceborne, airborne, and surface-based sensors. To save space, Table 1 focuses on sensors or combinations that produce or 
promise more 
aerosol parameters 
than the MODIS or 
MISR operational 
sets, although 
MODIS and MISR 
have supported 
very useful aerosol 
classification 
studies with their 
extensive, well-
documented, and 
validated data sets.  

Fig. 4, patterned on Fig. 10 of Burton et al. (2012), shows a way of presenting data for all eight parameters (dimensions) in Table 2 and all 6 aerosol classes (specified clusters) 
in Table 3. It illustrates, for example, that: 
- UrbInd and DevUrb are somewhat distinct in EAE440,870, but not in AAE440,870; 
- UrbInd is not distinct from BioBurn-Ama and BioBurn-Afr in EAE440,870 or AAE440,870, but is somewhat distinct from them in RRI670 (in accord with the Wilks’ partial lambda 

values in the right column of Table 2). 
Giles et al. (2012) show AERONET-derived plots of AAE vs EAE and SSA vs EAE that are quite similar to our Figs. 3 and 5. 
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Fig. 7. Results of applying our aerosol 
classification technique to 4 parameters 
(SSA490, EAE490,865, RRI670, dSSA490,865) of 
the Hasekamp et al. (2011) retrievals 
from PARASOL at FORTH-Crete. Colors 
of ellipses identify the prespecified 
clusters (aerosol classes); symbol 
shapes and colors of the FORTH-Crete 
data points identify the aerosol type 
(from Table 3) to which they are 
assigned. Error bars show retrieval 
uncertainty for the PARASOL-retrieved 
points. 

(a) (b) 

(c) 

Unknown: Point has <1% chance of belonging to any of the 6 classes; 
Color of  “Unknown” point indicates the class that has least 4-dimensional DM to the point. 
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