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Abstract

Simulations and measurements were used derive information on the form and strength of the nitrogen (N) ‘‘signal’’ in near-infrared (NIR)

spectra of fresh leaves. Simulations across multiple species indicated that in total, protein absorption decreased NIR reflectance by up to

1.8% absolute and transmittance by up to 3.7% absolute, all other inputs held equal. Associated changes in spectral slope were generally

of ± 0.02% nm� 1 absolute. Spectral effects were about an order of magnitude more subtle for a smaller, though potentially ecologically

significant, change in N concentration of 0.5% absolute over measured. Nitrogen influence on spectral slope was fairly consistent across four

empirical datasets as judged by wavelength dependence of N correlation, and there was reasonable agreement of observed and modeled slope

perturbations with locations of known protein absorption features. Improved understanding of the form and strength of the N signal under

differing conditionswill support continued development of laboratory-based spectralmeasurement and analysis strategies for direct N estimation

in individual fresh leaves. A pragmatic approach for canopy-level estimation by remote sensing, however, might additionally consider surrogate

measures such as chlorophyll concentration or canopy biophysical properties. D 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

Nitrogen provides crucial support for plant photosyn-

thesis and ecosystem productivity and acts as a limiting

resource in many systems (Field & Mooney, 1986; Lee,

Harmer, & Ignaciuk, 1983). Productivity, in turn, is an

index to global carbon cycling. Proteins are the primary

nitrogenous compound in leaves, typically holding 70–80%

of all N. An additional 5–10% of N is allocated to

chlorophyll and lipoproteins (Chapin & Kendrowski,

1983), with the balance held as nucleic acids, amino acids,

and inorganic N.

Several empirical studies have derived spectrally based

estimates of N or protein concentration in fresh leaves (e.g.,

Curran, Dungan, Macler, Plummer, & Peterson, 1992;

Johnson & Billow, 1996; Martin & Aber, 1994; Yoder &

Pettigrew-Crosby, 1995). These analyses were based on the

premise that organic molecular bonds comprising proteins

absorb radiation at various peak locations in the 1100–

2500 nm near infrared (NIR). Absorption in this region

results from harmonics and overtones of fundamental

absorption features centered at wavelengths greater than

2500 nm (Murray & Williams, 1987). Despite knowledge

of these absorption feature centers, the broader spectral

influence of nitrogen held in the fresh-leaf matrix has not

been well described.

Indeed, there is no clear consensus that information on

nitrogen (and other bioconstituents) can be robustly

extracted from fresh-leaf spectra. Where stepwise regression

is used to relate spectra to chemistry, as is common, it has

been noted that wavelength selections tend to be inconsis-

tent among studies and are not always clearly attributable to

known harmonic and overtone absorptions. For example,

Grossman et al. (1996) reported that regression responds to

spectral overlaps with biochemicals other than those being

examined, leaf anatomical characteristics, or instrument

noise. Fourty and Baret (1998) reported low predictive

performance of protein regression equations, cautioning that

protein absorption is weak, nonspecific, and tends to be

masked by water absorption. This has led to suspicion that

regression methods, at least in the case of N, respond to

factors other than absorption by the constituent of interest.

From a more theoretical standpoint, Jacquemoud et al.

(1996) found that inversion of a leaf reflectance model did

a poor job of estimating leaf N. They reported that fresh-leaf

spectra are ‘‘definitely insensitive’’ to protein, as protein

constitutes only a small proportion of total leaf mass.
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Turning to canopy-level estimation, Schimel (1995) dis-

cussed the potential contribution of remote sensing to

global-scale terrestrial biogeochemical cycling, suggesting

that the ability to map foliar N changes on the order of 0.5%

(dry weight basis) is required to ‘‘distinguish between

ecosystems with differences in N large enough to influence

photosynthesis.’’ Toward this general end, several studies

have related remotely sensed data to canopy N and other

biochemical constituents (e.g., Gastellu-Etchegorry et al.,

1995; Johnson et al., 1994; LaCapra et al., 1996; Martin &

Aber, 1997; Peterson et al., 1988; Wessman et al., 1988).

Despite some apparent successes, however, remote estima-

tion of canopy chemistry tends to be scene dependent

(NASA, 1994) and therefore not robust.

The goal of this study was to examine whether N

absorption affects fresh-leaf spectra and, if so, assess the

strength and form of the signal. Such information might

subsequently support formulation of sensor requirements

and information extraction algorithms for improved spec-

tral evaluation of nitrogenous compounds at leaf and

canopy levels.

2. Methods

2.1. Simulation

A leaf-level radiative transfer model, LEAFMOD

(Ganapol et al., 1998; Ganapol et al., 1999), was used to

simulate percent reflectance (Rl) and transmittance (Tl)

spectra of fresh, single leaves of 38 dicot and monocot

samples (Table 1). The simulations were supported by data

from the Leaf Optical Properties EXperiment (LOPEX;

Hosgood et al., 1995). These measurements included Rl

and Tl per sample, with the associated physical and

chemical measurements of Table 2. Rl and Tl measure-

ments were used to generate a scattering coefficient profile

per sample and subsequently to evaluate simulation good-

ness of fit. Specific absorption coefficient profiles for

protein (Fig. 1), lignin, cellulose, pigments, and water

were adapted from the PROSPECT v2.01 leaf model

(Jacquemoud et al., 1996).

Three simulation cases were considered: (1) Case 1x with

measured or nominal protein (Table 1) to establish the

capability of the model to ‘‘reconstruct’’ spectral measure-

ments using all available information; (2) Case 0x with

protein omitted, as a boundary condition; and (3) Case 1 + x

with protein elevated over nominal to mimic an N increase

of 0.5% dry weight (in keeping with Schimel, 1995). Set

Table 1

Samples used in modeling study, also comprising empirical dataset no. 4

1. oak (16.14);

Quercus pubescens

2. black locust (25.22);

Robinia pseudoacacia

3. chestnut (14.72);

Castanea sativa

4. hazel (16.95);

Corylus avellana L.

5. laurel (9.83);

Prunus laurocerasus

6. maize (26.55);

Zea mays L.

7. alfalfa (32.66);

Medicago sativa L.

8. sorghum (23.69);

Sorghum halepense

9. sunflower (34.89);

Helianthus annuus L.

10. soy (31.64);

Soja hispida

11. poplar (17.47);

Populus canadensis

12. clover (31.35);

Trifolium pratense L.

13. maple (18.09);

A. pseudoplatanus L.

14. ash (19.92);

Fraxinus excelsior L.

15. linden (21.78);

Tilia platyphyllos

16. beech (17.17);

Fagus sylvatica L.

17. potato (30.33);

Solanum tuberosum L.

18. nettles (26.32);

Urtica dioica L.

19. mulberry (20.56);

Morus nigra

20. grape, wild (11.91);

V. silvestris

21. walnut (20.08);

Juglans regia L.

22. apricot (16.13);

Armeniaca vulgaris

23. sage (19.16);

Salvia officinalis L.

24. black cherry (17.87);

Prunus serotina

25. red oak (13.56);

Quercus rubra

26. birch (14.85);

Betula alba L.

27. alder (22.21);

Alnus glutinosa

28. willow (14.36);

Salix alba L.

29. reeds (16.33);

Phragmites communis

30. banana (20.76);

Musa ensete

31. elm (16.55);

Ulmus glabra

32. grape, red (18.69);

Vitis vinifera L.

33. fig (19.67);

Ficus carica L.

34. bamboo (15.72);

Bambusa acundinacea

35. ivy (14.26);

Hedera helix L.

36. palm (11.27);

Chamaerops humilis

37. tomato (26.55);

Lycopersicum esculentum

38. grape, white (19.12);

Vitis vinifera L.

Protein concentration as% dryweight in parentheses, after measurements

of the LOPEX (Hosgood et al., 1995).

Table 2

Range of biophysical and biochemical measurements used as LEAFMOD

input

Thickness 86–583 m
Specific leaf area 82–398 cm2 g� 1

Equivalent water thickness 0.005–0.023 cm

Pigments 22.1–104.2 mg cm� 2 leaf area

Cellulose 9.1–37.2% dry weight

Lignin 1.1–27.5% dry weight

Nitrogen 1.7–5.9% dry weight

Protein 9.8–34.9% dry weight

38 fresh-leaf samples. Source: LOPEX archive (Hosgood et al., 1995).

Fig. 1. Protein-specific absorptivity profile (cm2 g� 1), adapted from

PROSPECT model v2.01 (Jacquemoud et al., 1996) as described by

Ganapol et al. (1999).
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1 + x protein concentrations were specified by assuming a

nitrogen/protein conversion factor of 6 (after Williams,

1987). All input parameters other than protein were held

constant across cases. Rl and Tl simulations were of range

400–2500 nm and interval (step) 10 nm for a total of 211

wavelengths (l).
Several quantities were calculated to evaluate the simu-

lations. Root-mean-square (RMS) error was used to express

goodness of fit vs. LOPEX measurement per sample:

RMSR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l

ðRl � Rl;mÞ2=n
r

; ð1Þ

RMST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l

ðTl � Tl;mÞ2=n
r

; ð2Þ

where Rl (Tl) was the predicted spectral response at

wavelength l, Rl,m (Tl,m) was measured response at

wavelength l, and n was the number of wavelengths (211;

Eqs. (1) and (2)).

Reflectance and transmittance differences were calcu-

lated per wavelength as:

DRl ¼ Rl;p1 � Rl;p2; ð3Þ

DTl ¼ Tl;p1 � Tl;p2 ð4Þ

where p1 and p2 were different protein values. DRl (DTl)

was the amplitude difference between two simulations of

differing protein. Table 3 shows an example calculation of

Eq. (3).

It is known that spectral conversion to first derivative

(slope), frequently approximated by differencing and

smoothing, reduces the effect of wavelength-independent

baseline shifts (Demetriades-Shah, Steven, & Clark, 1990,

Hrushka, 1987). Here, differences in spectral slope were

calculated per step as:

DR0
l ¼ DRlþ � DRl�; ð5Þ

DT 0
l ¼ DTlþ � DTl� ð6Þ

where l+ and l� were the long and short wavelengths of

each step, respectively. Output wavelengths were assigned

as the center points of each original step (i.e., 405, 415, . . .,
2495 nm), and differences were expressed on a nm� 1 basis

(Eqs. (5) and (6)). See Table 3 for example calculation

of Eq. 5.

2.2. Observation

In addition to the simulations, four intact fresh-leaf

datasets were analyzed (Table 4). The sets are fully

described in Hosgood et al. (1995), Johnson (1999),

Johnson and Billow (1996), and Yoder and Pettigrew-

Crosby (1995). Briefly, however, each set included labo-

ratory spectrophotometric measurements and associated

data on N concentration, commonly regarded as a surro-

gate measure for protein (Williams, 1987). Sets 1–3 were

monospecific: Douglas fir [Pseudotsuga menziesii (Mirb.)

Franco.], grape (Vitis vinifera L.), and bigleaf maple

(Acer macrophyllum P.). Set 4 included the 38 species

of Table 1. The cultivation regime of Sets 1 and 3

specifically attempted to control for differences other than

N concentration.

Sets 1–3 were measured with an NIRSystems Model

6500 scanning monochromator (Perstorp Analytical, Silver

Spring, MD). The instrument made bidirectional reflec-

tance measurements in the 400–2500 nm region with 2

nm step, 10 nm spectral resolution with 1050 channels in

total. Set 4 was developed with a Perkin-Elmer Lambda

19 double-beam spectrophotometer (Perkin-Elmer, Nor-

walk, CT) equipped with an integrating sphere. Hemi-

spherical reflectance measurements were made in the

400–2500 nm region with 1 nm step and spectral reso-

lution 1–5 nm depending on wavelength. For this study,

the Perkin-Elmer scans were resampled without interpola-

tion to a 10 nm step.

All reflectance measurements were converted to pseu-

doabsorbance (Al= log10 1/Rl) and then to absorbance first

difference (A0
l). First difference conversion and subsequent

smoothing of Sets 1–3 used the ‘‘1-4-4 Math Treatment’’ of

the Infrasoft International NIRS2 software package (Per-

storp Analytical). The procedure for Set 4 invoked the

‘‘diff’’ and ‘‘smooth’’ functions of the Splus software pack-

age (MathSoft, Seattle, WA). Both approaches computed

differences as

A0
l ¼ Alþ � Al�; ð7Þ

Table 3

Example calculations extracted from predicted reflectance spectra (Rl) of

Sample 1 (oak), Case 1x minus Case 0x protein

l

Case Variable 2140 nm 2150 nm

1x R 15.73% 16.03%

0x R 16.99% 17.44%

DR � 1.26% � 1.41%

DR 0
2145 � 0.15% over 10 nm

=� 0.015% nm� 1

Table 4

Fresh-leaf datasets used for correlation analysis

Set Species

No. of

samples Instrument

N range

(% dry weight)

1 Douglas fira 87 NIRS6500 0.7–3.3

2 grapeb 82 NIRS6500 2.0–3.9

3 bigleaf maplec 83 NIRS6500 1.0–4.5

4 various speciesd 38 Perkin-Elmer 1.7–5.9

a Johnson and Billow (1996).
b Johnson (1999).
c Yoder and Pettigrew-Crosby (1995).
d Hosgood et al. (1995).
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with 8 nm intervals used for Sets 1–3 and 10 nm for Set 4

(Eq. (7)). All results were smoothed by running means.

Finally, correlation (r) between A0
l and N was calculated per

dataset for the 1100–2500 nm region.

3. Results

3.1. Simulation

Mean RMS errors for Case 1x (reconstruction) were

low (RMSR = 1.1%, RMST = 1.7%), indicating that the

model produced an excellent fit to measurements through-

out the 400–2500 nm region, for the 38 samples. For

Case 0x, mean errors increased to 1.7% and 2.4%,

respectively, still good but higher than for 1x. Protein

omission served to increase RMSR in 36 samples and

increase RMST in 33 samples.

Trends in DRl and DTl were similar to each other

(Figs. 2 and 3). Both suggested that protein exerts an

absorbing influence throughout the NIR, with greatest

effect in the 2150–2350 nm region and least sensitivity

near water absorption peaks (� 1450 and � 1940 nm).

Absolute amplitude of DTl generally exceeded DRl for

a given protein difference. The boundary condition

protein differences expressed between Cases 1x and 0x

produced DRl and DTl maxima of about 1.8% and

3.7%, respectively. For the more subtle protein difference

between Cases 1 + x and 1x, maxima were about 0.2%

and 0.5%, respectively.

Trends in DR 0
l and DT 0

l were also similar, with DT 0
l

generally exceeding DR 0
l (Figs. 2 and 3). Both variables

were of range ± 0.02% nm� 1 for Case 1x minus Case 0x.

Maxima (arbitrarily defined as DR 0
l > |0.005% nm � 1|)

occurred at 1385, 1485, 1685, 1755, 1875, 2055, 2145,

2225, 2255, 2305, 2355, and 2375 nm. There was some

indication (more evident for DT 0
l) that the strongest

region of slope difference occurs >2000 nm. For Case

1 + x minus Case 1x, DR 0
l and DT 0

l were generally of

range ± 0.002% nm� 1.

3.2. Observation

Empirical sets 1–3 had similar patterns of correlation

between N and absorbance first difference (Fig. 4). In Set 4,

the pattern was less pronounced and r (A0
l, N ) was gener-

ally lower. Fig. 5 shows the spectral regions where

r(A0
l, N)>|0.5|. Several such regions, centered at about

1190, 1265, 1675, 2075, and 2160 nm, were common to

Sets 1–3, with Set 3 including additional, unique regions.

Fig. 3. Simulation results for Case 1 + x minus Case 1x, mean ± 1 S.D. for

38 samples of Table 1. (a) DRl (%), (b) DRl
0 (%), (c) DTl (% nm� 1), (d)

DT 0
l (% nm� 1).

Fig. 2. Simulation results for Case 1x minus Case 0x, mean ± 1 S.D. for 38

samples of Table 1. (a) DRl (%), (b) slope difference DR 0
l (%), (c) DTl

(% nm � 1), (d) slope difference DT 0
l (% nm� 1).
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Set 4 had two regions in common with the other sets:

� 1265 and � 2075 nm.

Fig. 5 includes additional information: (1) 12 LEAF-

MOD-predicted locations of slope perturbation associated

with protein after Fig. 2b, and (2) locations of ‘‘major’’

protein absorption features reported in the literature (Peter-

son & Hubbard, 1992; Williams & Norris, 1987). Of these

eight features, three occur within 5 nm of a prediction and

three others occur within 25 nm (Table 5). Best agreement

among observed correlation peaks, model predictions, and

published absorption features was observed in the following

regions: � 2075 nm (all sets), � 2160 nm (Sets 1–3) and

� 1675 nm (Sets 1–3).

4. Discussion

Simulations indicated that absorption by N (held as

protein) affects both the amplitude and slope of fresh-leaf

NIR spectral profiles, all other things held equal. However,

amplitude and slope effects associated with a change of

0.5% N were subtle and might be considered a challenging

basis for information extraction.

Some discrepancies were noted between locations of

predicted slope perturbations and major protein absorption

features (Table 5). The overall greater number of predic-

tions (12) vs. major features (8) may result from model

sensitivity to ‘‘lesser’’ protein features embodied in the

specific absorptivity profile and should not necessarily be

regarded as an artifact. The converse situation, or lack of

prediction at or near a major feature, occurs at 1187 and

1972 nm. Prediction failure near 1187 nm probably indi-

cates an anomaly in the protein-specific absorptivity profile

used here (Fig. 1), which contains no obvious peak in this

spectral region. The profile, which was determined with

dry leaf spectra, does contain a broad peak near 1970 nm.

Prediction failure in this region on fresh leaves possibly

indicates confusion introduced by water, which has a

strong absorption peak centered at 1940 nm (Curcio &

Petty, 1951).

Comparison of empirical datasets revealed consistent

trends in r(A0
l, N), particularly for Sets 1–3. However, the

consistency was not such that one would expect an identical

wavelength set, in the case of stepwise regression for

instance, to be objectively selected across sets. Less

agreement was seen with Set 4, possibly due its composition

of multiple species with different scattering characteristics.

All sets considered, good agreement was seen between

predicted and observed slope perturbations.

Fig. 5. Spectral regions where r (A 0
l, N)>.5 per dataset, after Fig. 4. Also

shown as ‘‘LEAFMOD’’ are predicted DR0
l maxima and minima of Fig. 2b.

For additional reference, locations of major protein features reported by

Peterson and Hubbard (1992) and Williams and Norris (1987) are shown as

vertical dashed lines. Datasets offset vertically for legibility.

Table 5

Locations of eight major protein features (after Peterson & Hubbard, 1992;

Williams & Norris, 1987), nearest predicted slope perturbation after Fig. 2b,

and difference (D)

Protein feature (nm) Nearest prediction (nm) |D|

1187 – –

1485 1485 0

1690 1685 5

1972 – –

2055 2055 0

2168 2145 23

2274 2255 19

2294 2305 11

‘‘– ’’ if D>25 nm.

Fig. 4. Correlation coefficients (r), absorbance first difference (A 0
l) vs. foliar

nitrogen (N), observed in four fresh-leaf sample sets. Horizontal dashed

lines shown for reference at r (A 0
l, N) = ± .5.
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5. Conclusions

Predicted and empirical data were used to derive

information on the form and strength of nitrogen influence

on fresh-leaf spectra. Boundary condition simulations

showed that in total, protein absorption decreased NIR

reflectance by as much as 1.8% absolute and transmittance

by up to 3.7% absolute, with slope changes generally of

range ± 0.02% nm� 1. Notably, spectral sensitivity was

approximately an order of magnitude smaller for a change

of 0.5% N, a value that has been previously suggested as

a remote-sensing requirement for regional to global eco-

system monitoring.

Protein influence on spectral slope was fairly consistent

across empirical datasets as judged by wavelength depend-

ence of N correlation. Generally, good alignment was seen

among observed and predicted locations of slope perturba-

tion and major protein absorption features. Key areas of

spectral sensitivity were centered at approximately 2075,

2160, and 1675 nm.

Most laboratory studies to date have examined leaf sets

of relatively wide N range. Future studies might further

address (1) the extent to which laboratory spectrophotom-

eters can exploit spectral effects of subtle N changes

expected in natural ecosystems as early response indicators

of environmental change, and (2) impacts of species and

leaf/plant condition on the form and strength of the N signal.

For canopy-level remote sensing, the situation is perhaps

more challenging due to uncertainty about the composition

of scene components (e.g., ‘‘mixed’’ pixels), greater pres-

ence of confusion factors, and data quality considerations.

Even allowing for possible leaf-to-canopy amplification of

absorption features (NASA, 1994), ‘‘direct’’ estimation of

canopy N, based strictly on N-related absorption features,

might be regarded as problematic given the subtlety of the

signal. A pragmatic approach might in addition, or instead,

consider surrogate measures such as chlorophyll concen-

tration for monitoring short-term physiological response to

environmental change. Longer-term responses might be

monitored through canopy architecture changes related to

leaf area index, leaf angle distribution, or eventually altered

species composition.
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