Challenges in modeling spatigemporal
variation in biogeophysical fields: examples
from ecological remote sensing

Geoffrey M. Henebry, Ph.D., C.S.E.

Collaboratoryfor Ecological Remote Sensing, Modeling & Analy§SEERSMA)
Center for Advanced Land Management Informationhhetogies (CAMIT)
School of Natural Resources
University of NebraskdLincoln
ghenebry@calmit.unl.edu
http://calmit.unl.edu/cersnia

T T
o .,‘.::- 3% - Center for Advanced Land Management Information Technologies
"::ll

S CaliT Nebisska




Outline of Talk

0. Synoptic ecology: remote sensing of ecologicdlange

1. What are the appropriate units of analysis?

2. What constitutes appropriate baselines?

3. How do we conduct change analysis?

4, How do uncertainties affect model reliability?

5. Slouching toward ecological forecasting.
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0. Why Synoptic Ecology?

A) Synoptic ecology focuses on the interface betweemt surface &
atmosphere, where human activity greatly affects tabiogeophysstal &
socioeconomic patterns and processes.

B) Science requires the ability ter distinguishl unusuathange fromexpected
variation. This assumes a geod! netion of what is pgcted and trereby
provides a foundation fer medeling.

C) Long range objective=» Construction of an gerational environmental
monitoring & forecasting system for the land surfae dynamics that
Interacts with other environmental monitoring & for ecasting systms, e.g.,
the global weather network.




Remote sensing Is a valuable tool for the ecolodist
permits him to extend observation of the relatigomsh
petween living organisms and the environment td vas
areas otherwise impossible to investig&emote sensing
IS Important to the scientist in allowing him to

determine the spatial relationships of the environmnt
by synoptic view of interaction of ecological variales
such as soil types and soil moisture with the gaolgcal
distribution of plant species.




THE CHALLENGE:

o \We are now In an era of intensive earth observatian

* Image time series are voluminous and difficult to aalyze.
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A DEEP PROBLEM:

What are the approprate units ofi analysis UoA) for
Image time: Seles; oilimages ol kiegeophysical fisld
localized WithrspaiEiRaRENEInpoECoedinaties?

*Fisher, P. 1997. The pixel: a snare and a delulziternational Journal of Remote Sensing 18:672685.

*Cracknell A.P. 1998. Review article. Synergy in remotesseg— whats in a pixeldnternational Journal of
Remote Sensing 19:20252047.

*Henebry, G.M., and J. W. Merchant. 2001. Geospd#atd in timelimits and prospects for predicting species
occurrences. IRredicting Species Occurrencdssues of Scale and Accura®y.M. Scott, P. Heglund M.L.
Morrison, J.BHaufler, M.G. Raphael, W.A. Wall, and F.B. Samson, ed)tolsland PressCovello, CA. Chapter
23. pp 291302.
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The UoA question involvesresolution & extent of
each dimension of measurememAND the
characteristic extents of the thing(s) observed.

Let R = scene object extent / sensor resolution.

If R< 1, then multiple scene objects can fall within amsensor
grain. Gradients in space. Fluctuations in time.
Summarized by measures of dependence, e.g., cort@a length.

If R> 1, then multiple sensor grains can portray a scenobject.

Inspired by: Strahler A.H., C.E. Woodcock, & J.A. Smith. 1986. On theture of modls in remote sensindremote
Sensing of Environment 20:12%1309.




There are no naturala priori spatial units!

We impose units by our observational processes. Thudelineatias
between patches are arbitrary and may be imprecis@ location, transitory
In duration, and irrelevant to underlying processesof interest.

Further, there Is noa priori ordering of the directionality of
causation in space comparable to thearrow of time.”

While topological relationships indicate who is theeighbor of whom,
additional information is required to know who are the effective neighbors.
Thisreguires the user to inform the geospatial database about the flows of
Influence among spatially ordered data.




The related problem of partitioning space: MAUP

Significant differences often exist between the sles of measuement and the
scales at which ecological and environmental modetperate.

General problem of scale dependence has long beenestigated br spatial
data in geography as the Modifiable Areal Unit Proliem (MAUP).

The principal undesirable consequence of the MAURsiequivocal tistical
analysis: by simply varying either data resolutionthrough aggregation or data
allocation through alternative zonations a spectrum of correlations may be
elicited from the same dataset.

By enabling the user to define and redefinareal units, GIS can actually
exacerbate the MAUP and premote discovery of spuries correlative
relationships (Openshawand Alvanides 1999).

*Arbia, G. 1989 Spatial Data Configuration in Statistical Analysis of Regional Economic and Related Problems. Boston:
Kluwer.

«Jelinski D.E., and J. Wu. 1996. The modifialaeealunit problem and implications for landscape ecold@ndscape
Ecology 11:129140.

*OpenshawsS. 1984.The Modifiable Areal Unit Problem. Concepts and Techniques in Modern Geography. arwK:
GecBooks.

*Openshaws., and SAlvanides 1999. Applyinggeocomputatioito the analysis of spatial distributions.Geographical
Information Systems. Volume 1 Principles and Technical Issues 2/e, edited by P.A. Longley, M.lGoodchild D.J.
Maguire, and D.WRhind, 267/282. New York: Wiley.




There are no objective solutions to the MAUP.

But its effects can be attenuated by using domairxpertise to pecify
meaningful ways to (is)aggregatedata.

Example of alternative partitionings of the plane:
Major Land Resource Areas MLRAs) —NRCS, solls bias
Bailey's ecoregions- USFS, climatevegbias
Omernik’s ecoregions- EPA, watershed/LULC biases
WWF ecoregions- NGO, wildlands bias(?)

phenoregionsof White et al. (2005)— conditional partitioning

*White, M.A., F. Hoffman, W.W. Hargrove, and RIRemani 2005. A global framework for monitoring
phenologicalesponses to climate change. Geophysical Reseattdrd 32:1.@705.




raster : vector :: field : object

People manipulate objects (but cultivate fields) =» Couclelis
(1992)argued that human cognition relies on both modes of

spatial representation.

Thus, It Is critical to embrace multiple representaional
modes or multtmodality in geospatial databases.

*Couclelis H. 1992 *People manipulate objects (but cultivate fieldgydnd the raervector debate in GI3.
In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, edited by A.U. Frank, I.
Camparj and U.Formentinj 6577. LNCS 639. New York: Spring&/erlag




ALTERNATIVE VALID VIEWS OF A
MATERIAL SYSTEM

ProcessFunctional
(ecophysiology& ecosystem)

MATERIAL SYSTEM
VEGETATION
Leaves ]«

energy capture

Bole
SOIL

CONSUMERS |, rate regulation

DECOMPOSERS

Roots |< nutrient retention

«Adapted from O’ Neill et al. 1986.A Hierarchical Concept of Ecosystems. Princeton University Press.




Pattern searching is not the same as hypothesmsgtiéecausthere is no
relevant null hypothesis. This point was lost lo@ driginal aiantitative
geographers [during the 198() ...[They] failed to develop a statistical
theory of spatial analysis as distinct from pronglexamples fostatistical
methods being applied to spatial data in searclafgelyaspatiabatterns.

The danger now Is that the same mistake will be regated 20
years later in the GIS era by a failure to apprecige that

spatial patterns are themselves geographic objedtsat can be
recognized and extracted from spatial databases

Openshaw 1994

*OpenshawsS. 1994. A concepisch approach to spatial analysis, theory genanatad scierific discovery in
GIS using massively parallel computing. In: Worboys ed.)Innovations in GISLondon: Taylor and Francis.
pp. 123137.




What IS of SCIentific Interest in
Image: inie Seresre not the

pictures themselves, but the
dynamic off patteri and process
that seguences ofi pIctures portray.




2. What constitutes appropriate baselines?

Statistical modeling @ complexspaiio-temporal data through

local filters on neighlfors (AK) and roise (MA)e.g., AR()MA,
CAR, SAR, wavelets, hakmonigi-ourier aralysisKkalman filters.

R
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Examples of complex expectations based on prior obivations

Expected spatio-temporal trajectories of surface greenness
in contrasting Omernik Level lll ecoregions

—/—Cascades #4

—&— Chihuahuan
Deserts #24

- Nebraska Sand
Hills #44

—C—Western Corn
Belt Plains #47

—C— Southeast WI
Till Plains #53

- -& - Southern
Florida Coastal
Plain #76

source: G. Henebry, UNL
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Imagine a picture
of a dung beetle
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Biome

Temperate broadleaf &
conifer forests (04)

- Temperate conifer forests

l:l Boreal forests/taiga (06)

Temperate grasslands,
savanna's and shrublands (08)

- Tundra (11)




SEEKING BASELINES —AN ANALOGY:

Consider sparsely sampling a movie by individual fames or
even frame sequences.

Intelligent (and informed) knowledge discovery in sientific
databases must aim at
* reconstructing plots,
* comparing plots,
* Identifying unusual plots, and
* Interesting deviations from typical plots.




Some relevant ecologicaplots’ include:

e Succession In ecological communities/ecosystem stiure
« Growth and development of urban areas

» Disaster recovery

* Invasive species/disease outbreak & spread

» Land surface phenology (both reflected and emittetight)




Land Surface Phenology: the what and the why

Land Surface Phenology Is defined as the spattemporal
development of the vegetated land surface as redds/
synoptic sensors (e.g., AVHRR, MODIS, VEGETATION,
MERIS, VIIRS, etc.).

Land Surface Phenology deals with mixtures of land
covers; it Is distinct from the phenology of pantar
species. Linked to seasonality of aboveground net
primary production (ANPP).

Need to understand dynamics of
Land Surface Phenology to model
carbon, water, energy exchanges ing
the biosphere.




3. How do we conduct change analysis?

. Change detection- perceiving the differences

. Change quantification— measuring the magnitudes of
differences

. Change assessmertdetermining the significances of
differences

. Change attribution — identifying/inferring the proximate causes

. Conseguences of changesancillary data, modeling, domain
expertise




Apparent changes In
NOAALL | TOAATE vegetated land surface
can result from:
— Sensor changes
— Seasonal variability
— Interannual variability
— Anthropogenic changes

How do we distinguish between these types of variation?
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4, How do uncertainties affect model reliability?

Model Reliability is the probability that a calibrated model will
correctly predict to within a predetermined level d accuracy
(Warwick and Cale 1987,Henebry 1995).

Computationally intensive model error analyses usio Monte
Carlo methods enable wideranging explorations of a models
parameter space to estimate the model reliability.

The model reliability approach imposes a decisiecmaking framework on
assessment of model performance. The reliabilityf@ model isestimated by the
frequency with which Monte Carlo predictions fall within a user-designated
accuracy interval at some specified time and/or Iation.

*Henebry G.M. 1995. Spatial model error analysis usinmearrelationndices. Ecological Modelling 82:7591.
*Warwick, J.J., and W.GCale 1987. Determining the likelihood of obtainingediable modelJournal of Environmental
Engineering 113:11021119.




Operations on the empirical distribution of model autputs form the basis for
decision statistics.

Say a model correctly predict species occurrencestivn a 1 km radius 60%
of the time, given input data with 15% uncertainty. But reducing the input
uncertainty to 10% might increase the model relialdity to 75%.

For models with multiple variables, the joint reliability 1s usually net simply
the product of the individual reliabilities, becau® the variables are typically not
Independent.

For the decisiormaker the utility of a model comes from its ease of
Interpretation and the degree of confidence that aabe placed n its predictions.
Reliability is an attractive decision statistic beause It Is ealer to grasp than
error measures based on sum of squares.

Mepolng moclel gerforrmzarice orlto 2 ginorizl velrizlolelesves no gy aresl
eltnier ine ocdel gerformead Uo to tne decisicinaier’ s siaridarcs or it dic 1)

S.
UL,
*Henebry G.M., and J. W. Merchant. 2001. Geospatial datame: limits and prospects for predicting species
occurrences. IRredicting Species Occurrencdssues of Scale and Accura¢y.M. Scott, P. Heglund M.L.

Morrison, J.BHaufler, M.G. Raphael, W.A. Wall, and F.B. Samson, ed)tolsland PressCovello, CA. Chapter 23.
291-302.




5. Slouching toward ecological forecasting.

To make ecological forecasting an operational possiity, we
need the capabillity to establish and to updateomplex spatio-
temporal baselines that will enable prediction of the usual and
the detection, quantification, & assessment of thenusual.




Take Home Points

1. What are the appropriate units of analysis?

2. What constitutes appropriate baselines?

3. How do we conduct change analysis?

4, How do uncertainties affect model reliability?
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Tuning the macroscope of remote sensing to support

ecological inference requires an integrated and stesned
approach to technology and theory.

Portrait of CONUS using AVHRR MIR (band 3)

Settlements & transportation networks appear appear
as white patches and lines contrasted against the
vegetated matrix.




