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Abstract 
An important challenge in Earth science processing is the large volume and distributed 
nature of the data required by many processing algorithms. Despite the increase in 
available bandwidth over the last several years, it is still often impractical, or at least very 
time-consuming, to acquire and locally stage the data prior to processing, because the 
volumes can run into tens or even hundreds of Gigabytes per day. In this paper, we 
describe a distributed system for Earth science data processing in which the control and 
execution of data-processing procedures are decoupled, allowing execution of 
independent data-processing components to be controlled remotely over the network. We 
use Web Services to export the interface of these components. Finally, we describe a 
planner-based agent that operates on the exposed Web Service components to 
automatically generate and execute data-flow programs to produce the requested 
products. We can then build entire processing pipelines that include pre-processing, 
processing and analysis of the results in an automated and efficient way, simplifying the 
development of distributed Earth science processing systems. We show an application of 
our system in the Terrestrial Observation and Prediction System (TOPS) whose goal is to 
provide a daily monitoring and prediction of numerous biospheric variables that are 
important indicators of the events happening within the Earth system. Finally, we show 
an application of our system to near-real-time fire monitoring and analysis. 
 

1. Introduction 
 

The management and efficient processing of Earth science data has been gaining an importance 
over the last decade, due to higher data volumes generated by a large number of satellites and 
ground stations and to the increase in complexity of Earth science models that use these data 
sets. This rapid growth is driven by the fact that in order to understand and predict the processes 
within the Earth, we need a global data set spanning many years and possibly decades. 
Additionally, in order to take full advantage of the vast amount of data being produced, we want 
the ability to seamlessly merge data from different sources within the models.



With the launch of NASA’s Terra and Aqua missions during the last 3 years, the need for more 
efficient, scalable, and intelligent data processing systems is even more apparent. In this paper, 
we address many of the issues facing the Earth science community as we present our distributed 
intelligent framework, which automates access, transport, translation, distributed processing and 
analysis of Earth science data. Our system consists of two main components – the Java 
Distributed Application Framework (JDAF) (Votava, 2002) and a planner-based agent called 
IMAGEbot (Golden, 2002). JDAF provides the low-level components for data access, processing 
and analysis, and IMAGEbot provides the intelligence to connect the individual components, 
synthesizing processing systems that adhere to specific requirements and constraints. JDAF and 
IMAGEbot interact with each other through a set of interfaces exposed through Java RMI (Pitt, 
2001) servers and Web services. 

We will describe two applications of our technology – the Terrestrial Observation and 
Prediction System (TOPS) (Nemani, 2002) and the fire-monitoring project. The main goal of the 
TOPS system is to provide both nowcast and forecast of a number of biospheric variables. Early 
warning of potential changes in these variables, such as soil moisture, snow pack, or primary 
production, could enhance our ability to make better socio-economic decisions relating to natural 
resource management and food production (Nemani, 2000). The fire-monitoring project provides 
near-real-time monitoring of reported fires and performs analysis with respect to current 
conditions and historic trends for that particular location. 

The remainder of the paper is organized as follows: in section 2, we introduce some of the 
challenges faced by the Earth science community and discuss data processing as an AI planning 
problem; in section 3, we describe both JDAF and IMAGEbot systems and their integration; in 
section 4, we discuss the applications of our technology. Finally, in section 5 we describe our 
plans and related work. 
 
 
2. Background 
 
Earth Science 
 
The latest generation of NASA Earth Observing System (EOS) (King, 1999) satellites has 
brought a new dimension to continuous monitoring of the living part of the Earth system, the 
biosphere. EOS data can now provide weekly global measures of vegetation productivity, ocean 
chlorophyll, and many related biophysical factors such as land cover changes or snowmelt rates. 
However, information with the highest economic value would be forecasting impending 
conditions of the biosphere that would allow advanced decision-making to mitigate dangers or 
exploit positive trends. NASA’s strategic plan for the Earth Science Enterprise identifies 
ecological forecasting as a focus for future research. Ecological forecasting predicts the effects of 
changes in the physical, chemical and biological environment on ecosystem activity. Imagine if 
we could accurately predict shortfalls or bumper crops of agricultural production, or West Nile 
virus epidemics or wildfire danger 3-6 months in advance, allowing improved preparation and 
logistical efficiency. The climate forecasting accuracy of many coupled Ocean-Atmosphere 
general circulation models (GCM) (McGuffie, 1997) have steadily improved over the past 
decade. Given observed anomalies in sea-surface temperatures from satellite data, GCMs are 
able to forecast general climatic conditions 6-12 months into the future, trends of hotter/colder 
temperatures and wetter/drier precipitation than normal, with reasonable accuracy. While such 



climatic forecasts are useful alone, the advances in ecosystem modeling allow us to explore 
specifically the impacts of these future climate trends on the ecosystem directly. 

One of the key problems in adapting climate forecasts to natural ecosystems is the 
’memory’ that these systems carry from one season to the next (e.g. soil moisture, plant seed 
banks, fire fuel accumulation etc.). Simulation models are often the best tools to carry forward 
the spatiotemporal ’memory’ information. The power of models that can describe and predict 
ecosystem behavior has advanced dramatically over the last two decades, driven by major 
improvements in process-level understanding, computing technology, and the availability of a 
wide-range of satellite- and ground-based sensors. 
 
 
Data Processing 
 
Many Earth science processing systems are driven by large numbers of scripts performing most 
of the scheduling and processing setups. Despite some advantages of this approach, mainly its 
rapid development, there are many drawbacks, including difficulties in maintainability, 
scalability to a larger number of datasets and processes, and flexibility in accommodating new 
processes and data streams in the existing system. Some of the issues stem from the nature of the 
scripts and their lack of language-level support to accommodate the translation of the design into 
the implementation. Other issues relate to the nature of the systems that are developed in this 
way - they are fast prototypes that often stay around as the only implementation of the system 
design.  

Apart from the lack of flexible and extensible processing framework, one of the main 
problems in current Earth science systems is a lack of common metadata standards. This makes 
dealing with large volumes of data very difficult in terms of data fusion and overall system 
flexibility. Additionally, the data come in many different formats (HDF, HDF-EOS, ASCII, 
GRIB, binary, and many others), projections, and quality, which can further complicate handling 
of multiple data streams.  

Due to the inflexibility of many current Earth science processing systems, there is often a 
long time lag between determining a need for a new capability and actually implementing this 
need in the production. Our Java Distributed Application Framework (JDAF) in combination 
with the IMAGEbot planner-based agent adds flexibility that will significantly cut the time 
required to support new capabilities, whether we need to add a new data stream, produce a new 
data product, add a new model, or create a new application. 
 
 
Planning 
 
Data processing has traditionally been automated by writing shell scripts. There are some 
situations when scripts are the best approach: namely, when the same procedure is to be applied 
repeatedly on different inputs, the environment is stable and there are few choices to be made. 
However, in many applications none of these assumptions holds. There are many different data 
products we would like the system to produce, there are many inputs and data-processing 
operations to choose from in producing those products, and the availability of these inputs can 
change over time. Additionally, many of these applications lend themselves well to planner-
based automation; they have precisely defined inputs, outputs, and operations whose effects can 



be precisely characterized. However, there are significant differences between the domain of 
Earth science data processing and more traditional planning domains, which calls for different 
techniques. Notable features of data processing domains include large dynamic universes, large 
plans, incomplete information and uncertainty.  

As discussed earlier, there is a large number of data sources that we can choose from, 
which are applicable under different circumstances. Data sources include several satellites, 
ground stations, and outputs from other models, forecasts and simulations. In addition to input 
choices, we also have several choices of models to use with the data. As with the data, the 
models produce results of various quality, resolution, and geographic extent. Moreover, there 
may sometimes be significant trade-offs in performance versus precision. An FPAR/LAI 
algorithm provides a good example of this tradeoff. We can produce an FPAR/LAI pixel using 
either a lookup table, in O(1) time, or a radiative transfer method, in O(nlogn) time (Knyazikhin, 
1999). The radiative transfer method provides better results, but can take substantially more time. 
Depending on whether time or accuracy is more important, either method may be preferred. 
Another reason for using different models at different times is their possible regional character. 
Some models are highly specialized and provide very good and precise results in only certain 
parts of the world. This is partially due to the fact that the scientists who develop these models 
have a great deal of knowledge about specific geographic area (Pacific Northwest, the Amazons, 
etc.). They have collected large amounts of local data over the years, and were able to develop 
models whose outputs are highly accurate in these regions. We usually don’t want to use these 
models when we are concerned with global monitoring, but they are useful when we have 
identified an important event occurring at the region where we have a very accurate regional 
model. 

 
 
3. System Design 
 
Java Distributed Application Framework (JDAF) 
 
One of the main goals of this framework is flexibility – we wanted to be able to add new 
components into the system with minimum integration efforts and make them produce results in 
a reasonable amount of time. One of the problems with many Earth science algorithms is that 
they comprise tens of thousands of lines of legacy code written in C, Fortran and C++, and it 
would take substantial efforts to re-write all of these algorithms in a way more suitable for 
integration. Instead, we have decided to write a set of simple wrappers in Java that would 
provide an interface between our system and the legacy code. These wrappers are subsequently 
used for interaction between the Java framework and the processing algorithms using the Java 
Native Interface (JNI) (Gordon, 1998). However, adding new processing algorithm to the system 
is only part of the solution; we would also like to integrate new data streams without changing 
the legacy code. This part is much harder, because the I/O components of the existing algorithms 
are often almost inseparable from the core science processing. We instead deploy a set of 
“filters” that preprocess the new data on the fly into a format expected by the processing 
components. This task is greatly simplified due to the Earth Science Markup Language (ESML) 
(Ramachandran, 2001) - an XML-based language that provides mechanisms for reading 
scientific data sets in many formats only by changing their external descriptions stored in XML 
files, and without the need to modify existing I/O code.  
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Figure 1: Key components of the JDAF framework 

 
 

The key components of the JDAF framework are depicted in Figure 1. At the lowest 
level, there is a set of models and utilities. The number of models in the framework depends on 
the particular application. Models in our framework refer to complex systems that describe some 
aspect of the real world in terms of mathematical equations. Low-level utilities consist of 
functions for data access, extraction, translation and transport. For example, utilities can include 
data download, composition, or reprojection. Since most of the models and utilities are written in 
C or C++, we do not access them directly, but rather through wrappers exported into the JNI 
layer. In order to keep track of the data, models and transformations, we use a three-tier database 
system that translates the applications’ requests into SQL queries and translates the query results 
into the objects needed by the applications. While our current implementation uses Postgres 
(Momjian, 2001), the design is flexible enough to accommodate most other implementations by 
loading the JDBC (Hamilton, 1998) database drivers at run-time. Finally, the models, utility 
functions and database interfaces are exported in two different ways. First, we use the remote 
method invocation (RMI) system provided by Java – this has historically been our main 
implementation strategy. However, with the recent development and improvements of the Web 
Services technology, we have migrated most of our interfaces in that direction. An important 
feature of exporting our interfaces through Web Services is ease of distribution and flexibility. 
We publish our services using WSDL (Chappell, 2002) and so we don’t have to distribute source 
code or binary executables. There are number of tools that convert WSDL descriptions to present 
the client with a high-level access to our published services. We are using Apache Tomcat 
(Brittain, 2003) and Apache Axis (Laurie, 2002) as the Web Service engine. 
 
 
 
IMAGEbot 
 
IMAGEbot is a planner-based agent that automatically generates and executes data-flow 
programs in response to user specified goals. The goals may vary with prospective customers of 
the system, who may be scientists, farmers, fire fighters, or emergency response teams. With 



such a variety of customers, there is a strong need for flexible mechanisms for producing the 
desired data products, taking into account the information needs of the customer, data 
availability, deadlines, resource usage, and constraints based on context. IMAGEbot provides 
such a mechanism, accepting goals in the form of descriptions of the desired data products. 
 In order to describe the complex data structures, constraints and programs that are the 
elements of the data processing domain, we have developed the Data Processing Action 
Description Language (DPADL) (Golden, 2003). DPADL is an expressive, declarative language 
with Java-like syntax, which allows for arbitrary constraints and embedded Java code. The 
constraint-based planner subsystem of IMAGEbot uses the DPADL action descriptions to 
synthesize data-flow programs based on a goal in the form of data description. The constraint 
solver can handle numeric and symbolic constraints, as well as constraints over strings and even 
arbitrary Java objects. The latter are evaluated by executing code embedded in the constraint 
definition, specified in the DPADL input file. Additionally, it can solve a limited class of 
universally qualified constraints (Golden, 2002). 
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Figure 2: Integrated JDAF, IMAGEbot and applications 

 
Integration 
 
While both JDAF and IMAGEbot are separate components that can be deployed independently 
of each other to solve variety of different problems, the power of the planner combined with the 



flexibility of the framework provides us with a system that is much more robust, flexible and 
efficient. It can be quickly tailored to vast variety of users and applications, ranging from global 
long-term monitoring of environmental change to near-real-time analysis of extreme events such 
as floods, fires, and droughts. From the JDAF point of view, the integration is handled through 
the Web Services and RMI interfaces exposed to the planner. The planner then needs additional 
capability – it is not sufficient to only generate plans, but it is necessary to execute them. Thus, 
there has to be a way to describe how to execute the operations provided by the environment and 
obtain information about the environment. DPADL provides this capability by permitting 
embedded Java code in definitions of new constraints and methods for executing actions. 
Variables used in planning and constraint reasoning subsystems can then reference Java objects 
as well as primitives such as integers and strings, so fine-grained interaction with the Java 
runtime environment is possible. Figure 2 depicts the system comprising IMAGEbot, JDAF, and 
sample applications. 
 
4. Applications 
 
Terrestrial Observation and Prediction System (TOPS) 
 
In order to estimate possible future states of the biosphere, we are building a flexible system that 
integrates ecosystem models with frequent satellite observations and can be forced by weather or 
climate forecasts and downscaled to resolutions appropriate to resolve surface processes. The 
Terrestrial Observation and Prediction System (TOPS) is a modeling software system that 
automatically integrates and pre-processes EOS data fields so that land surface models can be 
run in near-real-time with minimal intervention, facilitating accurate and timely interpretation of 
EOS data. Such a system allows us to determine the vulnerabilities of different socio-economic 
and resource systems to fluctuations within our biosphere, and helps in mitigating potential 
negative impacts. The goal of TOPS is to monitor and predict changes in key environmental 
variables. Early warnings of potential changes in these variables, such as soil moisture, snow 
pack, primary production and stream flow, could enhance our ability to make better socio-
economic decisions relating to natural resource management and food production. The accuracy 
of such warnings depends on how well the past, present, and future conditions of the ecosystem 
are characterized. The inputs needed by TOPS include: 

• Fractional Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI) 
• Temperatures (minimum, maximum, and daylight average) 
• Precipitation 
• Solar Radiation 
• Humidity (vpd) 

We have several potential candidates inputs at the beginning of each model run. The basic 
properties of the inputs are listed in Table 1.  
 The first step in TOPS processing is the selection of the inputs. One thing to note is that a 
criterion in selection may also be availability, because some inputs are not always available. For 
example, both the Terra and Aqua satellites experienced technical difficulties and data dropouts 
over periods ranging from few hours to several weeks. Before the selection process can begin, 
we have to get the data into some common format, so that the dataset comparison is possible. In 
the case of TOPS, this comparison is done with gridded data, so we have to make sure that we 



Source Variables Frequency Resolution Coverage 
Terra-MODIS FPAR/LAI 1 day 1km, 500m, 250m Global 
Aqua-MODIS FPAR/LAI 1 day 1km, 500m, 250m Global 

AVHRR FPAR/LAI 10 day 1km Global 
SeaWIFS FPAR/LAI 1 day 1km x 4km Global 

DAO Temp, precip, rad, vpd 8 hours 1.25 deg x 1.0 deg Global 
RUC2 Temp, precip, rad, vpd 1 hour 40km USA 
RUC2 Temp, precip, rad, vpd 1 hour 20km USA 
CPC Temp, precip 1 day Point data USA 

Snotel Temp, precip 1 day Point data USA 
NEXRAD Precip 1 day 4 km USA 

GCIP Radiation 1 day 0.5 deg Continental 
 

Table 1: TOPS input data choices 
 

convert the point data (CPC and Snotel) to grid data, which by itself is fairly complex and time-
consuming process. Next, the data are selected based on the goal, which at the start of the 
process is just the status of the variables we are interested in (primary productivity, soil water 
content, . . .) over the continental US. After the data are selected, we must put them into common 
format, which may involve reprojecting them into a common projection, subset the dataset from 
its original spatial extent, and populate the input grid used by the model. The data are then ran 
through the BGC (Hunt, 1992) model, which generates desired outputs. What follows is a new 
step in many Earth science systems: the data are compared against long term records and 
statistics, and the system determines whether there is something important happening in the 
covered area. An example of such event may be a large difference from a long-term normal for 
one of the output variables. Whatever the “interesting” event is, the system tries to investigate it 
further, and one way of accomplishing this is by getting a higher resolution information and 
going through the input selection process again. The goal has now changed, in terms of both 
detail and geographic extent, because we no longer need to run the model over the entire 
continent, but only over several selected areas. Furthermore, we would like more detailed 
information, so we may actually choose to run a more complex model that runs longer but 
provides us with higher quality information on the ongoing events, together with the prognosis 
for near future. As we can see, when this feedback loop is added to TOPS, the complexity of the 
system goes up even further. TOPS provides only a simple illustration of the potential problems, 
and is by far not as complex as many other models and systems in the Earth sciences, some of 
which take dozens of different inputs, with sizes reaching into terabytes for each model run. 
 
Fire Monitor 
 
Another application of our system is the Fire Monitor project. The front end to the system is a 
software agent that collects information about currently burning fires from multiple sources on 
the Internet. We can query the agent in regular intervals to supply us with the location (in terms 
of latitude and longitude), description (name of a place), size, and reported date of the fire. Our 
monitoring system then obtains the latest available data, which in some cases lag only few hours 
behind real-time. We extract the region information from the data based on the location, execute 



a set of models on this subset to acquire fire-relevant variables (soil moisture, gpp, …) and 
perform analysis of the results. The analysis looks at the recent history at this particular location 
in terms of the key variables like temperature, soil moisture, precipitation and so on, and this 
data is then matched against the historic records over the same area to determine any significant 
deviations. The comparisons are then plotted against each other in plots like the one in Figure 3. 
 

Figure 3:  Current and past conditions in a location of reported fire 

 

5. Conclusions and Future Work 

We have introduced two main components of our data processing framework – the Java 
Distributed Application Framework (JDAF) and the planner-based agent IMAGEbot. The 
integrated system can be used for a rapid development of intelligent Earth science applications. 

We have discussed a novel class of planning domains, data processing domains, that pose 
a number of new challenges for planners. In answer to these challenges, we have developed the 
DPADL language, which can represent complex, nested data structures, arbitrary constraints, and 
object creation. One challenge that we have not yet adequately addressed is the multi-criteria 
optimization problem inherent in the tradeoffs among features such as time, resource 
consumption and data quality. 

The comparison of the system developed using our application framework with the 
planner to our baseline script-driven system shows improvements in both performance and 
flexibility. While in can take days and even weeks to integrate a new module into our script-



oriented system, it took less than one hour to integrate a complete MODIS (Justice, 1998) 
production module using our framework.   
 Our TOPS and Fire Monitor systems produce data on continuous basis, but there are 
many improvements that we are currently preparing. The new additions include planner 
optimization, automatic wrapper generation for and easy drag-and-drop of new modules and data 
sources into our system, and the addition of a natural language interface (NLI) so that users can 
query the system by asking questions like “What is the fire danger for Western Montana for 
tomorrow?” This will make the system more interactive, but it will also introduce additional 
constraints on data storage and mainly on efficient processing. We have already started 
parallelization efforts on some of the key models, so that even an execution of a single model can 
be done in parallel on a compute cluster.  
  
Related Work 
 
There has been little work in planner-based automation of data processing. Two notable 
exceptions are Collage (Lansky, 1993) and MVP (Chien, 1997). Both of these planners were 
designed to provide assistance with data analysis tasks, in which human was in the loop, 
directing the planner. In contrast, the data processing in systems like TOPS must be entirely 
automated; there is simply too much data for human interaction to be practical. 
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