Asian Pollution at the California Coast, and African Plumes in the Mid-Pacific:
High Resolution CO Simulations Reveal Unexpectedly Long Transports
Research Staff:
Robert B. ChatfieldOne facet of our work highlights the origins of pollution flowing into the American West Coast. Figure 1 shows a feature discovered for the first time in the interpretation of NASAs broad airborne survey, Pacific Exploratory Mission, Tropic, Phase B, ("PEM-T B"). The map shows a general description of the pollution of the global troposphere by a pollutant normally associated with automobile exhaust and wintertime, namely carbon monoxide (CO). CO actually has a variety of pollution sources, including biomass burning, and als
o natural sources. It is a chemical reaction product in the atmosphere of the oxidation of methane and isoprene, which have biological sources.Both pollutant and natural sources of CO are concentrated over continents. In the figure, the southern part of the yellow area off the coast of the Americas, southwest from Mexico, comes from pollution processes in nearby Mexico and even the southeastern USA. Consequently, CO levels of ~90 parts per billion, about twice the clean-atmosphere background
off the coast from California, were thought to originate from such nearby land areas. These levels were sampled by NASAs DC-8 and P3B aircraft in an intensive sampling mission.In truth, this near-coastal pollution instead appears to follow a much longer path leading over the coast of East Asia, and typically arrived by sinking from a high altitude (~6 km). Meteorological trajectories tracing individual "parcels" indicate
d this, but could not tell origin of the air or describe quantitatively what sources produced the observed CO. This higher level of understanding is required as scientists attempt to predict our global future. Our simulations with the chemistry model nicknamed GRACES and the weather simulation system called MM5 confirmed the general origins: Air had passed over Asia. In addition, our techniques quantified mixing by fine-scale motions in the lowest kilometers near the sampling region, and also lofting of pollution through clouds and storms over Asia.Is Asia partly to blame for polluting the air entering the West Coast, exacerbating slightly the native smog problems of the United States? Our simulations indicate that this is often the case. Also, they suggest that Asian pollution emissions may be underestimated in the published data, since our model produces credible p
eaks, but at too low a level.Even longer-distance transport is the result shown in Figure 2. Occasionally, the air reaching our western shores has not been influenced by pollution over Asia. Instead, trajectories and analysis of maps such as Figure 2 suggest origins even further upwind. Exact attributions over these long distances are still difficult to make. Our analyses indicate origins from pollution, mostly tropical biomass burning, over northern subtropical Africa and South America. This is a surprise, and is indicated only by models with highly detailed spatial resolution. Both MM5 and GRACES have simulation grid points at ~100 km (60 mi) resolution
More theoretical studies that are
referenced by a large variety of airborne sampling studies have also aided Ames research. Work with Dalhousie University, Nova Scotia, has helped unravel the processes of ozone in the upper troposphere. Not only NOx (reactive nitrogen oxides, NO + NO2) but also a supply of active photochemical species, radicals like OH and HO2, are required to describe the ozone and oxidation chemistry of the upper troposphere.We have done
an analysis of the chemical effects of compounds like acetone, hydrogen peroxide, and other peroxides on the chemistry of the upper troposphere. These compounds are active radical sources, and tend to ignite the fuse of a photochemical reaction chemistry that determines ozone levels in the upper troposphere. The analyses have shown that acetone sources should do this but also decrease the available NOx to much lower quantities. The peroxide compounds were found to have a particularly important role in determining ozone. This has helped interpret the situational modeling and global analysis simulations. Such studies have broader implications. Ozone in this region has its strongest role as a greenhouse gas, but responds slowly to many influences.More information may be found at the
WWW site: http://sky.arc.nasa.gov/chatfield/Collaborator: I. Folking, Dalhousie University
Point of Contact:
Robert B. Chatfield, 650/604-5490, chatfield@clio.arc.nasa.gov
![[N Hemisphere CO Pollution]](chatfield1.gif)
![[N Pacific CO Pollution]](chatfield2.gif)
Fig 2. Carbon monoxide pollution of the North Pacific originating from a "subtropical global
plume" originating in Africa. (a) A map of CO at 8 km on March 16, 1999, showing several northern subtropical plumes extending from South America, Africa, and perhaps South Asia at a high point in the Northern Hemisphere spring burning season. Comparisons were made between data and simulation, with good results. (b) Back trajectory calculations made from the 8.2 km level at the approximate DC-8 position. No cloud lofting was apparent along these paths over Asia, though some trajectories encountered light convection as they passed through the meridian ~160 E in the Pacific. The trajectories and maps suggest the possibility that the southern portions of the northern hemispheric CO maximum (light green, >75 ppb CO) could be influenced by northern subtropical plume stranding together with broader patterns of Northern Hemisphere pollution. Strands of the subtropical pollution plume are clearly visible over Asia.