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Satellite-Sunphotometer Studies of Aerosol-Chemistry-Climate Coupling

Abstract. We propose to conduct research, as a renewal of our current Interdisciplinary Science and Radiation Sciences tasks, that addresses the following broad questions: (1) How are aerosols from natural and anthropogenic sources affecting atmospheric radiation and the climate, and (2) What are the effects of regional pollution on the global atmosphere?  We specifically will focus on the issues of (a) What are the optical properties of aerosols containing black carbon and other constituents, and how do these optical properties relate to their physico-chemical makeup, including their mixing state?  (b) How well can these aerosols be measured from space, and what can be done to improve space-based retrievals?  (c) How well are these aerosols represented in chemical-transport models? (d) What are the best ways to combine satellite and suborbital data in assessing aerosol and trace gas radiative-climatic effects? 

Our approach features integrated analyses of data from field studies that coordinate measurements from space, aircraft, and the surface, in conjunction with models of aerosols and radiation.  We emphasize the use of airborne sunphotometry as a unique link between space-based retrievals and a diversity of suborbital measurements.  These include in situ, vertically resolved measurements of radiative fluxes and of aerosol physico-chemical microproperties, as well as remote sensing by lidar and surface-based radiometers. Past experiments planned for analysis include SAFARI-2000, ACE-Asia (2001), and CLAMS (2001; see acronyms list on p. i). Planned and potential future experiments include ADAM (2003), INTEX-NA/ITCT 2K4 (2004), and AMMA (2005), as well as experiments to study Asian aerosols from biomass burning and other sources. The proposed research will support concept development for such missions, help prepare the community for participation, and, depending on mission dates, provide integrated data analyses.

Expected outcomes from the research include: (1) Tests of retrieval accuracy for satellite sensors such as MISR, MODIS, OMI, and SeaWiFS on satellites such as Terra, Aqua, Aura and Orbview, along with explanations of discrepancies and/or recommendations for improvements, (2) Models of black carbon-containing aerosols based on closure studies that integrate in situ sampling with remote measurements, (3) Tests of aerosol chemical-transport models (CTMs), including their predicted vertical distributions, (4) Implications of realistic, composite aerosol models for remote sensing algorithms and aerosol radiative effects, and (5) Regional assessments of aerosol radiative effects based on inputs that combine the salient features of satellite and suborbital measurements.

1
BACKGROUND, OBJECTIVES AND JUSTIFICATION

As noted by numerous studies and assessments (e.g., IPCC, 2001; NAS, 2001), atmospheric aerosols continue to be one of the largest sources of uncertainty in understanding current and past climates and in predicting the future climate.  This uncertainty results from the great variety and complexity of aerosol types, from their highly variable spatiotemporal distributions, and from the variety of pathways by which aerosols can affect the climate.  These pathways include not only aerosol direct effects on the scattering and absorption of radiation, but indirect effects caused by aerosol roles in cloud microphysics, and “semi-direct” effects caused by aerosol modification of atmospheric heating, temperature profiles, convection, and large-scale horizontal transport (e.g., Chameides and Bergin, 2002; Kaufman et al., 2002; Lelieveld et al., 2002; Menon et al., 2002).  Many of these pathways can affect precipitation, and thus aerosols are intimately linked to the hydrological cycle (e.g., Rosenfeld, 2000; Rotstayn et al., 2000).

As a result of these large and multifaceted uncertainties, the US Government’s Climate Change Research Initiative (CCRI) and the proposed National Aerosol-Climate Research Interactions Program (NACIP) have called for research to improve our understanding of the climatic effects of aerosols and their interplay with radiatively active gases.  This call is echoed by NRA-02-OES-06, which specifically solicits proposals for research on aerosol radiative-climatic effects—in particular research that builds on results of the NASA/GEWEX Global Aerosol Climatology Project (GACP), supports the strategy of NACIP, and responds to issues identified by IPCC (2001) and NAS (2001).  An issue highlighted by the NRA is the role of black carbon (BC)-containing aerosols in climate change, and the need to develop better techniques for measuring them and representing them in satellite retrieval algorithms and in models describing their global distributions and effects.  Also solicited by the NRA are proposals for analyses of existing field experiment data sets, with analyses of integrated satellite-suborbital data favored.

This proposal requests funding to renew our current tasks in the Interdisciplinary Science (IDS) and Radiation Sciences programs (see Section 2 for current task descriptions).  In accord with the call in NRA-02-OES-06, the objective of the proposed research is to address the following broad questions: (1) How are aerosols from natural and anthropogenic sources affecting atmospheric radiation and the climate, and (2) What are the effects of regional pollution on the global atmosphere?  We specifically will focus on the issues of (a) What are the optical properties of aerosols containing black carbon and other constituents, and how do these optical properties relate to their physico-chemical makeup, including their mixing state?  (b) How well can these aerosols be measured from space, and what can be done to improve space-based retrievals?  (c) How well are these aerosols represented in chemical-transport models? (d) What are the best ways to combine satellite and suborbital data in assessing aerosol and trace gas radiative-climatic effects?

Section 3 describes results from the IDS and Radiation Sciences tasks we seek to renew.  Also described are the approaches and conceptual framework of those tasks, which set the stage for the approaches to be used in the proposed research.  Section 4 outlines the proposed research, including data sets from completed field studies and summaries of planned experiments.

2
SUMMARY OF CURRENT RESEARCH TASKS

2.1
IDS Task: Satellite-Sunphotometer Studies of Aerosol, Water Vapor, and Ozone Roles in Climate-Chemistry-Biosphere Interactions. NASA RTOP 291-01-91-45, Interdisciplinary Science (IDS) Program, 2/2000-12/2002, $760,000. 

This IDS award has supported modeling and integrated analyses of suborbital and satellite data acquired primarily in three international multiplatform field campaigns: PRIDE (conducted in 2000), SAFARI 2000, and ACE Asia (2001). To date this task has produced 13 journal publications (Bergstrom et al., 2002b; Gatebe et al., 2002; Levy et al., 2002; Livingston et al., 2002; Magi et al., 2002; McGill et al., 2002; Pilewskie et al., 2002a; Reid et al., 2002a,b; Schmid et al., 2001, 2002; Wang et al., 2002a,b; Xu et al., 2002) and an additional submission (Colarco et al., 2002) describing results from these three campaigns.  Examples of these results are shown in Section 3.

2.2
Radiation Sciences Task: Improved Exploitation of Field Data Sets to Address Aerosol Radiative-Climatic Effects and Development of a Global Aerosol Climatology. NASA RTOP 622-44-75-10, Global Aerosol Climatology Program (GACP), 10/1998-3/2003, $777,000.
This GACP award has focused primarily on integrated analyses of data sets from TARFOX (conducted in 1996) and ACE-2 (1997), plus initial analyses of data from CLAMS (2001). Results are described in 12 journal publications led by the Ames sunphotometer-satellite team (Bergstrom and Russell, 1999; Bergstrom et al., 2002a; Livingston et al., 2000; Redemann et al., 2000a,b, 2001; Russell and Heintzenberg, 2000; Russell et al., 1999a,b; 2002; Schmid et al., 1999, 2000), plus 12 others we coauthored (Collins et al., 2000; Durkee et al., 2000; Ferrare et al., 2000a,b; Flamant et al., 2000; Gasso et al., 2000; Hartley et al., 2000; Ismail et al., 2000; Pilewskie et al., 2000; Tanre et al., 1999; Veefkind et al., 1999; Welton et al., 2000). Examples of these results are shown in Section 3.

3
EXAMPLE RESEARCH RESULTS

Figures 1 and 2 show schematically the scientific motivation and overall approach for our IDS and GACP tasks.  As indicated by Figure 1, aerosols caused by biomass burning, desert dust storms, urban pollution, and other processes form features recognizable from space on regional to intercontinental scales (e.g., Husar et al., 1997; Kaufman et al., 2002).  These aerosols can change the climate by perturbing energy exchange between the sun, Earth, and space, as well as by redistributing energy within the atmosphere. Two gas-phase constituents, water vapor and ozone, are also relevant to these tasks, because they interact with aerosols both chemically and physically, and they are themselves major players in the Earth’s radiation budget.  All three constituents—aerosols, water vapor, and ozone—can be retrieved quantitatively from spaceborne measurements.  However, retrieval accuracy is still being determined, because it depends strongly on constituent type, measurement conditions (e.g., over land vs. water, in or out of sun glint, in or out of cirrus or other cloud fields), and spaceborne measurement technique (e.g., multiangle, multiwavelength, polarization, nadir- vs. limb-viewing, passive vs. active, etc.).  

The three constituent types can also be measured by airborne sunphotometry.  Our IDS and Radiation Science tasks have emphasized the use of airborne sunphotometry as a unique link between space-based retrievals and a diversity of suborbital measurements.  These include in situ, vertically resolved measurements of radiative fluxes and of aerosol physico-chemical microproperties, as well as remote sensing by lidar and surface-based radiometers. A key theme has been combining satellite and suborbital measurements to develop more complete and realistic descriptions of aerosol and gas properties and effects.

Figure 2 illustrates the coordination of satellite and suborbital measurements used in many field studies—e.g., TARFOX, ACE-2, PRIDE, SAFARI 2000, ACE-Asia, CLAMS—to maximize the synergy between the different types of measurements.  Following such coordinated measurements, the analysis challenge has been to capture the salient results from each type of measurement in developing a sufficiently accurate and complete description of aerosol and trace gas properties and effects in the study region.  Successful analyses have included not only testing (and sometimes improving) the accuracy of satellite-retrieved products, but also combining those products with information from suborbital measurements in models to describe regional aerosol radiative effects.

In the remainder of this section we show illustrative results, as an introduction to the proposed research.

3.1 Satellite Validation

During the experiments analyzed in our IDS and Radiation Sciences tasks (TARFOX, ACE-2, PRIDE, SAFARI-2000, ACE-Asia, and CLAMS), considerable effort was devoted to coordinating aircraft measurements with satellite overpasses. The list of satellite sensors includes AVHRR, GMS-5, GOES-8 imager, MISR, MODIS, SeaWiFS, TOMS and ATSR- 2. The aircraft measurements include aerosol optical depth spectra measured by an Ames Airborne Tracking Sunphotometer (AATS-14 
or AATS-6; e.g., Matsumoto et al., 1987). When measured on transects flown near the land or ocean surface, such optical depth spectra are useful for validating products from the satellite sensors. Here we show a representative sampling of such comparisons we have completed to date.
MODIS Dust Retrievals in PRIDE. Figure 3 shows a scatter plot comparing aerosol optical depths (AOD) at four wavelengths, as retrieved by MODIS and as measured by AATS-6 flying near the ocean surface in the MODIS scene. All measurements were made in the Puerto Rico Dust Experiment (PRIDE). Data points with AOD>0.2 are from conditions dominated by Saharan dust transported to the Caribbean (Reid et al., 2002a,b).  For the cases with little or no dust (AOD<0.2), MODIS and AATS-6 values are within ~1 error bar of the 1:1 line. In dust-dominated conditions (AOD>0.2), this is also true for AOD at wavelength 870 nm. However, at the shorter wavelengths, MODIS-retrieved AOD systematically exceeds the AATS-6 values. Thus, in dust-dominated conditions the slope of AOD vs. wavelength is steeper in MODIS-retrieved spectra than in AATS-6 spectra. This

[image: image1.jpg]
Figure 1. Schematic of the scientific motivation and overall approach for our current IDS and Radiation Science tasks.

[image: image14.wmf]
Figure 2. Schematic of the approach used in field experiments that coordinate a variety of suborbital measurements, including airborne sunphotometry, with satellite overflights. Example of size-resolved composition data is from Wang et al. (2002a). Electron microscope (EM) image of particles is courtesy of James Anderson, Arizona State University.  EM image is 7 m wide.

[image: image2.wmf]
Figure 3. Scatter plot comparing AODs retrieved by MODIS to those measured by AATS-6 in PRIDE (Livingston et al., 2002).

is shown explicitly in Figure 4, which plots the same data as spectra of AOD vs. wavelength.

The likely cause of this slope difference is dust nonsphericity, which causes the MODIS retrieval to substitute more small mode aerosol for nonspherical large mode dust (Remer et al., 2002). An updated MODIS algorithm that adds nonspherical phase functions is being developed to address this.

MODIS Retrievals in SAFARI 2000. MODIS-AATS comparisons in SAFARI 2000 helped confirm that the biomass smoke single scattering albedo (SSA) originally used in MODIS AOD retrievals (SSA ~0.9, based on SCAR-B) produced retrieved AODs < correlative AODs (see, e.g., the points marked MODIS 9:02 UT in Figure 5.  Adopting a new SSA (~0.85) has now produced retrieved AODs (V4 MODIS in Figure 5) that agree with AATS, AERONET, and other AODs in regions with strong biomass burning such as in Zambia. 

Other AATS-14 measurements in SAFARI 2000 (not shown for brevity) provided the first validation of MODIS-retrieved AODs at wavelengths 1.2 and 1.6 m over water (Schmid et al., 2002).

[image: image3.wmf]
Figure 4. MODIS and AATS spectra for the 7 cases in Figure 3 (Livingston et al., 2002). 
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[image: image4.wmf]
Figure 5. Comparison of AOD spectra from MODIS retrievals and AATS-14 measurements in SAFARI 2000 during a dense haze episode from biomass burning.

[image: image19..pict]
Figure 6. Comparison of AOD spectra from MISR retrievals and AATS-14 measurements in SAFARI 2000.

MISR Retrievals in SAFARI-2000. MISR-AATS comparisons in SAFARI-2000 (e.g., Figure 6) showed that a model including small, spherical, non-absorbing particles needed to be restored to the MISR retrieval.  (It had been deleted early in the mission to reduce computer resource requirements.)  As shown in Figure 6, before this model was restored, neither the best-fit nor the 2nd best-fit MISR model was able to match both the slope and magnitude of the AATS-14 AOD spectrum. 

SeaWiFS Retrievals in ACE-Asia. Comparisons (e.g., Figure 7) between AATS measurements and SeaWiFS retrieved AOD yield good agreement if the new 4-wavelength Hsu et al. (2002) algorithm is used, but disagreement if using the standard SeaWiFS algorithm. 

MISR Retrievals in ACE-Asia. MISR-AATS comparisons in ACE-Asia (not shown for brevity) confirmed that early MISR-derived AODs were skewed high for some low-light-level scenes.  Subsequent experiments demonstrated that scattered light played a key role in this phenomenon, and led to a revision of the MISR low-light-level calibration (that significantly affects MISR-derived AOD over dark water) (R. Kahn, personal communication). 

3.2 Closure Among Suborbital Measure- ments

Closure studies test the consistency of different measurements that are linked by one or more models.  Because the linking models (e.g., of aerosol growth in humidity, of light scattering by mixed aerosols) are often used as components of the chemical transport models or general circulation models that predict aerosol effects on climate, closure studies provide important assessments of both the measurements and the models that undergird our current understanding of aerosol effects on climate.

An important class of closure studies addresses the question: "Can in situ measurements of aerosol properties account for the solar beam attenuation (extinction) by an aerosol layer or column?"  Such closure studies have revealed important insights about aerosol sampling and inadvertent modification in such previous experiments as TARFOX (Hegg et al., 1997; Hartley et al. 2000), ACE-2 (Collins et al., 2000; Schmid et al., 2000) and SAFARI 2000 (Magi et al., 2002). 

Key to these studies is the measurement of aerosol optical depth and columnar water vapor with an Ames Airborne Tracking Sunphotometer (AATS-14 or AATS-6). This is because inlet effects (e.g., loss or enhancement of large particles, shrinkage by evaporation of 

[image: image5.wmf]
Figure 7. Comparison of spectral aerosol optical depth on April 12, 2001 between AATS-14 and SeaWiFS, using standard and Hsu et al. (2002) algorithms.

[image: image6.wmf]
Figure 8. Left panel:  Aerosol optical depth profiles at 13 wavelengths from 354 to 1558 nm calculated from AATS-14 measurements acquired during an aircraft ascent south of Korea on 17 April 2001 during ACE-Asia.  Right panel: Corresponding aerosol extinction profiles derived by differentiating spline fits (dashed lines in left panel) to the optical depth profiles. 

water, organics, or nitrates) and filter effects are avoided. During ACE-Asia, AATS-14 measured the transmission of the direct solar beam at 14 discrete wavelengths  from 354 to 1558 nm, and AATS-6 measured at 6 discrete wavelengths between 380 and 1020 nm. From these direct solar beam transmission measurements we derived spectral aerosol optical depths AOD(), columnar water vapor CWV, and columnar ozone. Flying at different altitudes over a fixed location allows derivation of AOD() or CWV in a given layer. Data obtained in vertical profiles allows derivation of spectral aerosol extinction Ea() (see Figure 8) and water vapor density w.

Measuring solar beam attenuation by an AATS on the same aircraft as in situ sensors allows a close match in the aerosol layers described by the attenuation and in situ measurements (see, e.g., Figure 2).  Such a match allows the best-defined comparison between attenuation and in situ results. It avoids the ambiguity that occurred in previous experiments when the only sunphotometer was on the ground and thus provided no information on what fraction of column optical depth was above the aircraft’s maximum sampling height. An example from ACE-Asia where the in situ extinction is computed as the sum of scattering (from humidified nephelometry) and absorption (from a PSAP instrument) is shown in Figure 9. 

Figure 10 shows an example result from an ACE-Asia closure study (Wang et al., 2002a) that compares aerosol extinction from AATS-14 with values calculated from Mie theory using measured size distributions and size-resolved composition (used to determine the complex refractive indices). In the uppermost layer, the underestimate of Mie-predicted extinction compared to the AATS-14 result is attributed to nonspherical dust particles there, which are undersized by the in situ mobility analyzer (Wang et al., 2002a).

Our extinction closure analyses have also included comparisons with the numerous lidars deployed during TARFOX, ACE-2, SAFARI-2000, and ACE-Asia on land, ships and aircraft. Figure 10 shows an example using the ACE-Asia ship lidar (e.g., Welton et al., 2001) during the same flight as shown in Figures 8 and 9.

AATS-6 and AATS-14 measure the overlying column water vapor (CWV) using a channel in the 940-nm water vapor absorption band.  Vertical differentiation of AATS CWV profiles in aircraft ascents or descents yields profiles of water vapor concentration. Our closure studies have included many comparisons between the AATS water vapor results and those from a variety of other measurement techniques (e.g., Schmid et al., 2000, 2001).  Figure 11 shows examples for AATS-14 in ACE-Asia.

Initial results from CLAMS were presented at the AGU Fall 2001 and Spring 2002 meetings and at the AMS 2002 Radiation Conference. The talks included data measured by AATS-14 aboard the University of Washington CV-580, plus comparisons to other suborbital measurements obtained using (i) the AERONET sun/sky radiometer at the Chesapeake Lighthouse, (ii) the MODIS Airborne Simulator (MAS), and (iii) in situ measurements aboard the UW CV-580. Having examined the agreement of the various suborbital aerosol measurement techniques, further comparisons were presented of suborbital AOD measurements to AOD retrievals using data acquired by MISR and MODIS aboard the Terra satellite. To date (December 2002), our participation in CLAMS has resulted in 12 conference publications, some of which we plan to develop into peer-reviewed journal papers as part of the proposed research (see Section 4).

Our closure studies have also included comparisons of aerosol absorption and single scattering albedo (SSA) derived by different techniques. In Russell et al. (2002) we compared aerosol absorption derived by diverse techniques in TARFOX and ACE-2, and found that absorption derived from broadband solar irradiance measurements (~300-700 and 300-4000 nm) was larger than that derived from other techniques.  As shown in the next section, using spectrally resolved irradiance measurements can yield absorption spectra and, when combined with AOD spectra, SSA spectra.
[image: image7.wmf]
Figure 9. Aerosol optical depth (left) and extinction (right) profile at 550 nm measured by AATS-14 and computed as the sum of scattering (from humidified nephelometry) and absorption (PSAP instrument) during aircraft ascent shown in Figure 8.

[image: image8.png]
Figure 10. Comparison of aerosol extinction derived from AATS-14 measurement, aerosol size distributions, and lidar measurements on R/V Ron Brown during the ascent shown in Figure 8 (Wang et al., 2002a).

[image: image20..pict]Figure 11. Comparison of water vapor measurements on the Twin Otter in ACE-Asia by AATS-14 and in situ sensors.  (a-l) Representative vertical profiles. (m) Comparison of layer water vapor for 26 profiles. Error bars are based on horizontal distance spanned by a profile, combined with average horizontal variability of CWV in ACE-Asia flights. (n) Comparison of water vapor density for the 26 profiles.
3.3 Aerosol Absorbing Fraction from Radiative Flux and AOD Spectra 

Results in this section are from a collaboration with Dr. Peter Pilewskie of NASA Ames, who was funded by a separate task of the Radiation Sciences Program.  Dr. Pilewskie flew Solar Spectral Flux Radiometers (SSFRs) on the same aircraft as our AATS-6 or AATS-14 in PRIDE, SAFARI-2000, and ACE-Asia.  The SSFRs measured downwelling and upwelling solar radiative flux spectra, from which the net (downwelling minus upwelling) flux spectrum was derived.  The difference between net flux spectra at two altitudes is the absorption spectrum of the atmospheric layer (gases and particles) between the two altitudes. Combining this SSFR-measured absorption with AATS-measured AOD in a radiative tranfser model yields spectra of SSA in the layer.

Figure 12 illustrates this type of analysis for an ACE-Asia flight of the Twin Otter, which included level legs at altitudes 43 and 2277 m.  The measured absorption spectrum (blue curve in frame a) is shown in frame b as a fraction of the downwelling radiation at the upper level. Frame c shows AOD spectra measured by AATS-14 at the same altitudes.  The radiative

[image: image9.wmf]
Figure 12. (a) Measured and modeled  absorption spectra for the ACE-Asia profile flown on Twin Otter Flight RF07, 12 April 2001. (b) As in (a), expressed as fraction of downwelling flux on 2277 m leg. (c) AOD spectra measured simultaneously on the same aircraft.

transfer model of Bergstrom et al. (2002b) used these measured AOD spectra with an assumed wavelength-independent SSA to calculate the model absorption spectra (red curves) shown in frames a and b. Note that this assumed SSA clearly underestimates absorption for wavelengths <600 nm.

[image: image10.wmf]
Figure 13. Aerosol single scattering albedo spectra derived from the measured flux and AOD spectra in Figure 12.
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Figure 14. Derived dust single scattering albedo from PRIDE (blue curve) and ACE-Asia (green curve). Five aerosol models are shown for comparison (Quijano et al., 2000; Ackerman and Cox, 1988)

Adjusting model SSA to produce a match between modeled and measured absorption yields the SSA values shown in Figure 13 with the wavelength regions dominated by gaseous absorption removed. Figure 14 compares the SSA spectra derived for this ACE- Asia case and an analogous PRIDE case to published results for Saharan, Afghan and SW Asian dusts (Quijano et al., 2000; Ackerman and Cox, 1988). 

3.4 Aerosol Optical Modeling 

During the course of our IDS and Radiation Sciences tasks we have developed and used a variety of aerosol optical models in an effort to capture the salient features of aerosol measurements in a form that can be used in radiative transfer modeling.  Here we cite two examples. 
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Figure 15. Difference in single scattering albedo estimates (solid), absorption humidification factor (short-dashed) and absolute value of the single scattering albedo (long-dashed) at 550 nm for a mono-modal log-normal size distribution with a geometric mean radius of 0.06 µm and a geometric standard deviation of 1.5. Highlighted in the gray box is the area for which the single scattering albedo is greater than or equal to 0.75 (lower limit of observed values) [Redemann et al., 2001)].

In Redemann et al. (2001) we used a core/shell model of internally mixed soot/sulfate particles to show that, when aerosol black carbon (BC) occurs as an inclusion in a sulfate shell, humidity increases can increase absorption.  This occurs because the shell focuses the electromagnetic field on the BC, and shell growth in rising humidity increases the focused field strength. Calculations of this effect for realistic size distributions, humidities, and BC/sulfate ratios show that, for the range of SSA found in TARFOX and ACE-2 (i.e., 0.85(midvis(0.99), the frequently used assumption that absorption is humidity-independent may overestimate SSA by ~0.02 (more for smaller dry particles in narrow size distributions, less for larger particles in broad distributions).  This effect is illustrated in Figure 15.

In Bergstrom et al. (2002a) we compared the wavelength dependence of aerosol absorption measured in TARFOX with theoretical predictions for black carbon (BC) particles. We found that the measured -1 dependence of absorption was consistent with model calculations of absorption by small BC particles with little wavelength dependence of real and imaginary refractive indices.
3.5 Tests of Chemical-Transport Models

International comparisons (e.g., Penner et al., 2001) of the chemical-transport models (CTMs) that predict aerosol spatial distributions show that vertical distributions often differ markedly from model to model.  Hence, the vertical profiles of AOD and extinction measured by our airborne sunphotometers (AATS-6 and -14) can provide a key performance test for such CTMs. We have participated in such tests of the models GOCART (Chin et al., 2001, 2002), CARMA/MATCH (Colarco et al., 2002), and MATCH (Collins, 2002; Rasch and Collins, 2001).

Figure 16 shows examples of such comparisons (Colarco et al., 2002) between Sahara dust AOD profiles simulated by  CARMA/MATCH and AOD profiles measured by AATS-6 in the Puerto Rico Dust Experiment (PRIDE; see Reid et al., 2002a,b; Livingston et al., 2002).  In the first case shown (June 28, 2000, top frame), the AOD profile measured by AATS-6 shows a decrease from near the surface to ~4 km altitude, with the steepest AOD decrease in the PBL (~0 to ~1.4 km).  Since the vertical rate of decrease of AOD is aerosol extinction, the AATS AOD profile therefore shows the largest aerosol extinction in the PBL, with less above. Other PRIDE measurements for this case indicate that most of the aerosol extinction, both in the PBL and above, was from dust. PRIDE analyses identify this as a case of low-level transport of Saharan dust to the Caribbean (Reid et al., 2002a,b), which was typical early in the PRIDE period (June 28 – July 24, 2000). In contrast to the data, two of the model profiles (0% and 10% scavenging) show constant or nearly constant AOD in the PBL (0 to ~1.2 km), indicating little or no dust there, but steadily decreasing AOD from 1.2 km to 5.5 km, indicating significant dust extinction aloft.  Thus these modeled dust profiles show most dust above the PBL, indicating a case of predominant transport in an elevated Sahara Air Layer (SAL).  The model simulations with <100% scavenging in the precipitating part of clouds (see labels in figure) do show some dust in the PBL (i.e., some AOD decrease with height there), but none of the simulations for this case reproduces the measured vertical profile of AOD very well.
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Figure 16. Comparison of AOD profiles measured by airborne sunphotometer (AATS-6) and computed by the CARMA/MATCH model.  Model AOD profiles are labeled by the assumed wet scavenging within the precipitating part of clouds (Colarco et al., 2002). 

Better agreement between model and measurements is shown in the lower frame (July 5, 2000).  This is another case of low-level dust transport.  Both AATS-6 and the model show AOD decreasing steadily from the surface with height.  The model profile with 10% scavenging in the precipitating part of clouds matches the AATS-6 AOD well from the surface to ~1 km.  Above that height, model calculations with more than 10% scavenging produce better agreement with AATS AOD.

Comparisons between GOCART and AATS-14 for Asian aerosols measured in ACE-Asia have been presented by Chin et al. (2001, 2002). Comparisons between MATCH simulations and AATS measurements in ACE-Asia are also underway. 
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3.6 Regional Forcing Assessments by Combining Satellite and Suborbital Results

Our first regional assessment of aerosol radiative forcing (Bergstrom and Russell, 1999) combined single-wavelength seasonal AOD maps of the North Atlantic region with aerosol intensive properties derived from the TARFOX and ACE-2 field programs.  The AOD maps were derived by Husar et al. (1997) from AVHRR reflectances; an example is shown in Figure 17a.  The aerosol intensive properties included optical depth wavelength dependence across the solar spectrum, single scattering albedo, hemispheric upscatter fraction, and relative vertical profile, all synthesized from suborbital measurements by aircraft and ground sites (including lidars). The satellite and suborbital inputs were combined in a radiative transfer model (Bergstrom et al., 2002b) to derive maps of cloud-free and all-sky radiative forcing; an example for cloud-free conditions is shown in Figure 17b. As shown in Bergstrom and Russell (1999), cloud effects, estimated from ISCCP data, greatly reduce the regional annual average, because of the large cloud fractions in the North Atlantic.

More recently we have been using ACE-Asia satellite and suborbital data to estimate the radiative impact of the Asian Pacific plume of desert dust and pollution, which is one of the world’s most climatically significant aerosols. 
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Figure 17. (a) June-August mean AOD at 500 nm derived from AVHRR radiances by Husar et al. (1997).  (b) 24h-average, cloud-free direct shortwave aerosol radiative forcing at the tropopause derived from the total aerosol optical depth map in (a).  The radiative calculation (Bergstrom and Russell, 1999) assumes an aerosol model based on suborbital measurements in TARFOX and ACE-2.  The choice of SSA shown here, a=0.9, is based on radiative flux measurements; other measurements yielded larger SSA (a~0.92 to 0.98) (Russell et al., 2002a).  Bergstrom and Russell (1999) show results for a=1 and a=0.9.
[image: image13.jpg]Figure 18. (a) April 2001 monthly mean AOD at 865 nm derived from SeaWiFS radiances using the algorithm of Hsu et al. (2002).  (b) 24h-average, cloud-free direct shortwave aerosol radiative forcing at the surface in Wm-2, derived from total aerosol optical depth shown in (a).  The radiative calculation assumes an aerosol model of dust over pollution aerosols.  The relative amounts of dust and pollution aerosols are adjusted pixel-by-pixel to force model Angstrom exponent to equal the Angstrom exponent derived from the 4-wavelength SeaWiFS radiances by Hsu et al. (2002).
Our initial studies have used SeaWiFS-derived maps of aerosol optical depth and Angstrom exponent, as well as in situ data obtained during ACE-Asia (Russell et al., 2002b). Figure 18a shows a map of the April 2001 monthly mean aerosol optical depth at 865 nm, derived from SeaWiFS-measured radiances using the algorithm of Hsu et al. (2002). We computed corresponding maps of shortwave direct aerosol radiative forcing of climate at the surface and at the top of the atmosphere (TOA) by using the map in Figure 18a in conjunction with profiles of a model dust over a model pollution aerosol, each constrained by ACE-Asia measurements.  We adjusted the relative amounts of dust and pollution in each pixel to produce a model Angstrom exponent that matches the SeaWiFS-retrieved Angstrom exponent in that pixel. An example result for surface radiative forcing in cloud-free conditions is shown in Figure 18b.

In another approach, presented by Redemann et al. (2002b), we have made more explicit use of ACE-Asia aerosol intensive properties derived in closure-study vertical profiles and obtained a cloud-free surface radiative forcing map similar to that in Figure 18b.

3.7
AATS Maintenance and Upgrades

Our Radiation Science task also provided limited but important support for maintenance and upgrades to the Ames Airborne Tracking Sunphotometers (AATS). Maintenance and upgrades for AATS-14 included repairing a water leak, extending the wavelength range by adding a new channel at wavelength 2.139 m, removing the liquid cooling system (thereby reducing the instrument weight by ~ 6 to 8 lbs), doubling the power to the detector heaters to help maintain detector set point temperature in extremely cold environments aloft, cleaning all filters and detectors, cleaning seals, cleaning/lubricating bearings, and procuring new optical filters to and replace those that have slowly degraded over time.  We calibrated the newly modified AATS-14 at Mauna Loa Observatory in August and November 2002.  We flew it on three DC-8 flights in September 2002 to test its performance and conduct an airborne Langley calibration. 
4 PROPOSED RESEARCH 


For the funding requested in Section 6 we propose to conduct the following research over a period of three years.

4.1 Integrated Analyses of Prior Experiments

We propose to apply methods similar to those described above to analyze existing data sets from three experiments: ACE-Asia, CLAMS, and SAFARI 2000.

Data Set 1. ACE-Asia (Spring 2001). This set includes measurements on the Twin Otter aircraft by AATS-14, SSFRs, and many in situ sensors, plus measurements on the C-130 aircraft by AATS-6 and many other sensors, all made in coordination with satellite overpasses.  The satellite data products include multiwavelength aerosol optical depth (AOD) from sensors such as MISR, MODIS, SeaWiFS, AVHRR, and others.  Also available through collaborations are fields of AOD and other properties predicted by the chemical-transport models (CTMs) CFORS, GOCART, MATCH, and NAAPS (see list of acronyms on p. iii; see Section 3.5 for references describing models). 

The ACE-Asia results shown in Section 3 are a very small sample of analyses already underway and possible in the future.  Two special issues of J. Geophys. Res. are planned for ACE-Asia, with papers due November 30, 2002 and ~six months later. Our team is leading two ACE-Asia closure papers (Redemann et al., 2002c; Schmid et al., 2002b) and participating in many more.  This work is funded by our current IDS task and a NOAA task, both of which will expire in the next several months.

We propose the following research on the ACE-Asia data set:

(1a)
Complete, through final journal publication, the closure papers now underway (2 led by our team, ~6 coauthored). These papers include a detailed analysis of all available ACE-Asia profiles including stratification of the closure results with respect to aerosol types, relative humidity, flight pattern during profile and other factors. The data include lidar extinction profiles and total column AOD from various satellites.

(1b)
Extend the derivations of SSA spectra from SSFR absorption spectra and AATS AOD spectra (e.g., Section 3.3) to include more cases representative of the variety of aerosols in ACE-Asia (e.g., dust, pollution, sea salt, biomass burning, and various mixtures).

(1c)
Participate in tests of the ACE-Asia performance of the CTMs GOCART and MATCH by using AATS-6 and –14 data in vertical profiles and along horizontal gradients. Complete this work through journal publications.

(1d)
Contribute to the validation of CERES data by furnishing ACE-Asia AATS-6 and -14 data, and data-use advice, to Dr. Sundar Christopher of the University of Alabama in Huntsville.  Dr. Christopher is proposing an investigation that would, among other things, use biaxial scan mode CERES data to develop angular models for estimating radiative fluxes and thereby reduce uncertainties in aerosol radiative forcing. 

(1e)
Complete, through journal publication, the assessment of regional radiative forcing by ACE-Asia aerosols. For this assessment the following satellite-derived aerosol products are available:

•
Maps of optical depth mode radius and the ratio of coarse to fine particles from MODIS (http://modis-atmos.gsfc.nasa.gov/MOD04_L2/); 
•
Maps of aerosol optical depth from AVHRR (ftp://ssa.noaa.gov/patmosa/)

•
Maps of a dust index from GMS-5 (dustnpgs at http://www.joss.ucar.edu/cgi-bin/joss-catalog/ace-asia/products/index)

•
Maps of absorbing aerosol index from TOMS (http://toms.gsfc.nasa.gov/aerosols/ aerosols.html)

•
Maps of aerosol optical depth and Angstrom exponent from SeaWiFS (Hsu et al. (2002), available at 
http://code916.gsfc.nasa.gov/Missions/ACEASIA/satellite)
•
Maps of optical depths and the dominant aerosol type (dust, black carbon, sea salt and sulfate) (Higurashi and Nakajima, 2002; Hsu et al., 2002).

This assessment will also utilize the results of the column closure and SSA studies (1a and 1b above).  These are expected to yield:

•
Comparisons between aerosol absorption properties as derived from radiative flux and as measured by the PSAP instruments aboard the NCAR C-130 and the CIRPAS Twin-Otter;

•
The vertical distribution of aerosol extinction from comparison of sunphotometer- and in situ- derived aerosol properties (cf. Figures 8-10);

•
Information on the vertical distribution of aerosol species based on the vertical distribution of Angstrom parameters.

This information will be combined with the observed absorption results to constrain the inputs to the radiative transfer model.  For example, the aerosol observed during the ACE Asia campaign was extremely complex mixture of dust and urban pollution.  Using our detailed radiative transfer model (Bergstrom et al., 2002b), we will compute the effect of the multi-modal aerosol on the observed satellite radiances.  (The included multiple scattering code, DISORT, can compute radiances as well as fluxes.)

To avoid the inconsistency in using one model of aerosol radiative properties to convert the satellite-measured radiances into aerosol optical depth and a different model to convert the aerosol optical depth to aerosol radiative forcing, we also propose to collaborate with the teams of A. Higurashi (National Institute of Environmental Studies, Ibaraki, Japan) and T. Nakajima (Univ. of Tokyo, Tokyo, Japan).  We will work with them to develop an aerosol model for SeaWiFS measurements that will be used in both the conversion of satellite radiances to AOD and in the conversion of AOD to aerosol radiative forcing of climate. We will also perform sensitivity tests to assess how changing aerosol model parameters affects derived forcing, both when using the same model for both steps, and when using different models in each step.  This should enable us to more accurately estimate the aerosol radiative forcing and the associated uncertainties.  A major objective will be to quantify and reduce the uncertainties in aerosol radiative-climatic effects cited by NACIP (Ramanathan et al., 2002)

Initial comparisons between various satellite sensors (e.g., MODIS vs. SeaWiFS) indicate considerable differences in temporally-averaged fields of aerosol optical depth. Such differences could be due to the complex interaction of aerosols and clouds in the western Pacific region and the associated complications in satellite cloud screening algorithms, or due to inadequate modeling of the mixtures of various aerosol types in satellite retrieval algorithms. Hence, as a second element of this task, we propose to compare the aerosol optical depth fields derived from various satellite sensors (MODIS, SeaWiFS, MISR, AVHRR) as they are relevant to the calculation of regional mean aerosol radiative forcing of climate. Based on the comparison of instantaneously measured aerosol optical depth between suborbital and satellite sensors, we expect to aid in explaining any differences found between aerosol products from different satellite sensors.

Data Set 2. CLAMS (Summer 2001). This set includes measurements on the UW CV-580 by AATS-14 and many in situ sensors, plus measurements by AERONET and other surface samplers and lidar, all made in coordination with satellite overpasses. A special journal issue is planned, with papers due in Spring 2003.  

We propose the following research using the CLAMS data set: 

(2a)

Complete processing and archival of data acquired by AATS-14, using formats that facilitate intercomparison with aerosol and water vapor products derived by EOS Terra sensors (e.g., MISR, MODIS, CERES).

(2b)
Compare AATS-14 results to ground-based measurements taken by the MODIS-Atmosphere team using a network of hand-held sunphotometers; provide AATS-14 measurements during fly-by’s at these sites as a “calibration standard”. 

(2c)
Support the MODIS-Atmosphere team in the development of an AOD retrieval algorithm over MODIS/MAS sun-glint regions by providing high spatial resolution AATS-14 measurements. 

(2d)
Collaborate with the MODIS-Atmospheres team to test the standard AOD retrieval algorithm in cases of small-scale AOD variability and gradients; assess small-scale aerosol variability for all low-level flight legs of the UW CV-580. 

(2e)
Support the MISR aerosol team in their efforts to improve and refine the existing MISR AOD look-up tables and retrieval algorithm. 

(2f)
For AATS-14 data taken during suitable flight patterns, derive profiles of aerosol extinction spectra and water vapor density by differentiating optical depth and column water vapor profiles for all feasible time periods. 

(2g)
Combine data with in situ measurements to provide tests of closure and integrated assessments of aerosol and trace gas radiative effects.  

(2h)
Report results of the analyses in joint publications with collaborating investigators by the deadline for the JGR-CLAMS special issue.

Data Set 3. SAFARI 2000.  The first set of SAFARI 2000 journal papers is already in press, including two led by our team (Schmid et al., 2002a; Bergstrom et al., 2002b) and several others we coauthored (e.g., Gatebe et al., 2002; Magi et al., 2002; McGill et al., 2002; Pilewskie et al., 2002).  However, the integrated SAFARI 2000 data set has strong potential for further advanced collaborative analyses, and this is highly encouraged by the SAFARI organizers.  We propose the following:

(3a)
Revisit MODIS validation using MODIS version 4, which uses not only a new SSA but also allows over brighter surfaces, leading to potentially more matchups than in Schmid et al. (2002a).

(3b)
Redo the MISR comparisons using the latest MISR algorithm (which has a more complete set of aerosol models).

(3c)
Collaborate with Eric Vermote to validate his high-resolution (1km) over-land MODIS retrieval.

(3d)
Compare aerosol SSA values retrieved from satellite with those from in situ sensors and SSFR on the CV-580.

(3e)
Investigate radiative forcing by African outflow aerosols over stratus clouds off the Namibian coast (which was measured by AATS-14 in SAFARI-2000 to have AOD in excess of 0.7 in the midvisible).

4.2 Potential Future Experiments and Preferred Aircraft

Several future experiments relevant to the goals of this proposal are in various stages of planning or conception.  This proposal does not request funding for measurements in these experiments.  However, these future experiments are relevant to this proposal for several reasons.  First, the analyses proposed above will support concept development for such future missions and help prepare the community for participation.  Moreover, if we participate in one or more of these future experiments with separate funding, the resulting data would help answer the questions addressed by this proposal.  Therefore, we propose to use some of the requested funds for integrated analyses of such data sets.

Experiment 1. Asian Dust Above Monterey (ADAM). This experiment, planned for April 2003, will use the CIRPAS Twin Otter to test predictions by the NAAPS model (Westphal and Liu, 2000; Bucholtz et al., 2002) of Asian dust outbreaks, cross-Pacific transport, and North American impacts. We are currently planning to participate in ADAM by making measurements with AATS-14 using other funding.  However, our available funding cannot cover analyses of our expected ADAM data set. If this proposal is funded we will analyze our ADAM data set using the methods exemplified in Section 3 and outlined in Section 4.1.

Experiment 2. Intercontinental Chemical Transport Experiment-North America (INTEX-NA). Phase A of this experiment, planned for May-August 2004, will use the NASA DC-8 and P-3B aircraft to study the exchange of chemicals and aerosols between continents and the global troposphere (Singh et al., 2002). INTEX-NA will coordinate its activities with concurrent measurement programs including satellites (e. g. Terra, Aura, Envisat), field activities undertaken by the North American Carbon Program (NACP), and other U. S. and international partners. INTEX-NA planning documents call for measurements of aerosol optical depth, and we plan to propose such measurements when the INTEX-NA call is released.  However, funding for such experiments often does not cover the type of integrated analyses that we typically do in such integrated experiments.  Hence, if we are funded for measurements in INTEX-NA Phase A, we propose to use funds from this IDS-Radiation Sciences proposal to perform such integrated analyses.  Depending on the degree of satellite coordination achieved by INTEX-NA, these analyses could include validation of sensors carried by Terra, Aqua, Aura, and Envisat (see below).

Experiment 3. Intercontinental Transport and Chemical Transformation (ITCT). This experiment is planned to coordinate with INTEX-NA in Spring-Summer 2004 and make measurements on a NOAA P-3.  Its goals will be similar to those of INTEX-NA, with perhaps more emphasis on aerosols and their radiative-climatic impact. We have discussed with NOAA representatives the possibility of flying AATS-6 or AATS-14 on the NOAA P-3 or perhaps operating an AATS on the NOAA ship Ron Brown.  Depending on funding arrangements with NOAA, there may be a need for analysis support from the current IDS-Radiation Sciences proposal.

Experiment 4. African Monsoon Multidisciplinary Analyses (AMMA). This experiment, planned for 2005, will study the processes that influence the development of the African Monsoon. An aerosol component is possible. [More coming in Prospero email??] 

Experiment 5. Asian Brown Cloud (ABC) and/or Biomass Aerosol and Smoke Experiment (BASE-Asia). Several efforts are underway to plan one or more experiments to study aerosols produced by biomass burning and other sources in Southeast and East Asia, including Thailand and possibly China.  We will stay in touch with these planning efforts, and if there is an opportunity to propose participation, we will do so.

Note on Satellite Validation

Many of the above experiments will provide opportunities for validating both new satellite sensors and those currently flying.  Several of particular note are summarized here.

OMI on Aura. The INTEX White Paper (Singh et al., 2002) notes that, if Aura is making measurements during INTEX, aircraft flights will be coordinated with Aura overpasses, thus providing opportunities for Aura validation and integrated studies.  Of the Aura sensors, OMI is of particular relevance to the proposed research,  OMI’s goals include measuring aerosols and  distinguishing between aerosol types, such as smoke, dust, and sulfates.  As shown in Section 3, AATS measurements as part of an integrated aircraft payload could make a major contribution to validating such OMI measurements.  We plan to propose such measurements to the INTEX call when it appears.

GLAS and CALIPSO.  Both GLAS (scheduled for launch in December 2002 on ICESat) and CALIPSO (August-October 2004 with CloudSat) have a goal of producing profiles of aerosol extinction from their measurements of backscattered laser light.  As noted in Section 3, we have used AAST-6 and AATS-14 to validate lidar-derived extinction profiles in many experiments (e.g., Figure 10), including profiles from the downward-viewing Cloud Physics Lidar System on the ER-2 (Schmid et al., 2002a).  If there is an opportunity to propose validation measurements for either GLAS or CALIPSO, we plan to do so.
Suborbital platform preferences
The earliest future experiment, ADAM (April 2003) will use the Twin Otter of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS). Our 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) has already flown on the CIRPAS Twin Otter.

(A payload similar to ADAM’s, including AATS-14, will fly on the Twin Otter in the May 2003 Aerosol IOP at the Southern Great Plains site.  Those AATS-14 measurements and analyses are funded separately from this proposal.)

The next experiments of interest to this proposal are the coordinated INTEX-NA and ITCT 2K4 (May-August 2004), which will use the NASA DC-8 and P-3B and a NOAA P-3. AATS-6 and -14 have flown on the NASA DC-8 and on aircraft similar to the P-3 (e.g., CV-580, C-130). We are currently discussing with NOAA personnel possible ways of integrating AATS-14 on a NOAA P-3.  Recently there has been some mention of the CIRPAS Twin Otter participating in these experiments, to provide more focus on aerosol radiative effects than the other platforms will.  We would favor this.

The following aircraft can also be well suited to flying an AATS, depending on configuration and on mission scientific objectives: NSF HIAPER, NRL P-3, SKYResearch Cessna Caravan.

4.3
Instrument Maintenance and Enhancement

As time and funding permit, we propose to explore potential AATS-14 enhancements beyond those implemented in FY02 (see Section 3.7). Possibilities now being considered include (a) installing a spectrometer or electrically calibrated pyranometer, and (b) further reducing weight and size to permit flight opportunities on more platforms and missions.
A separate proposal (Schmid et al., 2002c) proposes to develop and fly an airborne pointing sun-sky photometer based on AATS-14 and on AERONET optics and analyses.
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7.  STAFFING, RESPONSIBILITIES, AND VITAE

7.1 Roles of PI and Co-Is

Dr. Philip Russell will be Principal Investigator.  As such, he will supervise the work, lead the planning, and participate in the analyses, as well as selected presentations and publications.  He will be responsible for completion of the work within budget and schedule. Drs. Beat Schmid, Jens Redemann, Robert Bergstrom, and Mr. John Livingston will be Co-Is, each responsible for key research tasks and for coordinating with the project team at Ames and with outside collaborators. 

7.2 Collaborations

The proposed research requires many comparisons to data produced outside our group, as well as use of still other data in our integrated assessments of aerosol effects.  The best way to accomplish such research is through collaborations with the experimenters, analysts, and modelers who produce these data.  This was also true of the previous work on our IDS and Radiation Sciences tasks. The resulting collaborations are evidenced by the coauthor lists on the papers cited in Section 2.  We have found that such collaborations develop naturally through participation in the integrated experiments that we join.  Not all these collaborations can be anticipated in advance.  However, several key collaborations are worth citing here.

Dr. Peter Pilewskie of NASA Ames is submitting a separate proposal to NRA-02-OES-06 that includes collaboration with our team to combine his SSFR data and our AATS data to derive SSA from the ACE-Asia data set.  

Dr. Sundar Christopher of the University of Alabama in Huntsville is proposing an investigation that would, among other things, use biaxial scan mode CERES data to develop angular models for estimating radiative fluxes and thereby reduce uncertainties in aerosol radiative forcing. If our proposal is funded, we plan to collaborate with Dr. Christopher and contribute to the validation of such CERES data by furnishing ACE-Asia AATS-6 and -14 data, and data-use advice.
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Postdoctoral Appointee, National Center for Atmospheric Research (1971-72, at University of Chicago and NCAR).  Physicist to Senior Physicist, Atmospheric Science Center, SRI International (1972-82).  Chief, Atmospheric Experiments Branch (1982-89), Acting Chief, Earth System Science Division (1988-89), Chief, Atmospheric Chemistry and Dynamics Branch (1989-95), Research Scientist (1995-present), NASA Ames Research Center.
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· Member, American Geophysical Union and American Meteorological Society

Selected Publications (from 28 published or in press, plus 1 recently submitted)
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Wang, J., et al., incl, B. Schmid, Clear-column radiative closure during ACE-Asia: Comparison of multiwavelength extinction derived from particle size and composition with results from sunphotometry J. Geophys. Res., submitted, 2002.
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Ph.D. in Atmospheric Sciences, UCLA.
1999
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· Developed a coupled aerosol microphysics and chemistry model to study the dependence of aerosol absorption and single scattering albedo on ambient relative humidity.
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SRI International
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Senior Research Meteorologist, Applied Physical Sciences Laboratory

University of Arizona,Tucson, AZ (1974-1977)
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Research assistant, Institute of Atmospheric Physics
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Scientific Contributions

-
Acquisition and analysis of ground-based, airborne, and shipboard sunphotometer measurements in a variety of coordinated international field campaigns to study the radiative impact on climate of anthropogenic pollution, volcanic aerosol, and African and Asian dust
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Livingston, J.M., V.N. Kapustin, B. Schmid, P.B. Russell, P.K. Quinn, T.S. Bates, P.A. Durkee, P.J. Smith, V. Freudenthaler, M. Wiegner, D.S. Covert, S. Gasso, D. Hegg, D.R. Collins, R.C. Flagan, J.H. Seinfeld, V. Vitale, and C. Tomasi, 2000: “Shipboard sunphotometer measurements of aerosol optical depth spectra and columnar water vapor during ACE-2 and comparison with selected land, ship, aircraft, and satellite measurements,” Tellus, 52B.
Livingston, J.M., and P.B. Russell, 1989:  “Retrieval of Aerosol Size Distribution Moments from Multiwavelength Particulate Extinction Measurements,” J. Geophys. Res., 94, 8425-8433. 
Livingston, J.M., and R.M. Endlich, 1988:  “The Relationship of Satellite-Inferred Stratospheric Aerosol Extinction to the Position of the 50 mb North Polar Jet Stream,” J. Appl. Meteor., 27, 757-773.

Livingston, J.M., and E.P. Krider, 1978:  “Electric Fields Produced by Florida Thunderstorms,” J. Atmos. Sci., 83, 385-401.

Ludwig, F.L., J.M. Livingston, and R.M. Endlich, 1991:  “Use of Mass Conservation and Critical Dividing Streamline Concepts for Efficient Objective Analysis of Winds in Complex Terrain,” J. Appl. Meteor., 30, 1490-1499.

Oberbeck, V.R., J.M. Livingston, P.B. Russell, R.F. Pueschel, J.N. Rosen, M.T. Osborn, M.A. Kritz, K.G. Snetsinger, and G.V. Ferry, 1989:  “SAGE II Aerosol Validation:  Selected Altitude Measurements, Including Particle Micromeasurements,” J. Geophys. Res., 94, 8467-8380.

Pueschel, R.F., and J.M. Livingston, 1990:  “Aerosol Spectral Optical Depths:  Jet Fuel and Forest Fire Smokes,” J. Geophys. Res., 95, 22,417-22,422.

Russell, P.B., J.M. Livingston, P. Hignett, S. Kinne, J. Wong, A. Chien, R. Bergstrom, P. Durkee, and P.V. Hobbs, 1999: “Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sunphotometer and in situ data with those measured by airborne pyranometer,” J. Geophys. Res., 104, 2289-2307.

Russell, P.B., J.M. Livingston, R.F. Pueschel, J.A. Reagan, E.V. Browell, G.C. Toon, P.A. Newman, M.R. Schoeberl, L.R. Lait, L. Pfister, Q. Gao, and B.M. Herman, 1993:  “Post-Pinatubo Optical Depth Spectra vs. Latitude and Vortex Structure:  Airborne Tracking Sunphotometer Measurements in AASE II,” Geophys. Res. Lett., 20, 2571-2574.

Russell, P.B., J.M. Livingston, and E.E. Uthe, 1979:  “Aerosol-Induced Albedo Change: Measurement and Modeling of an Incident,” J. Atmos. Sci., 36, 1587-1608.

Uthe, E.E., J.M. Livingston, and N.B. Nielsen, 1992:  “Airborne Lidar Mapping of Ozone Concentrations During the Lake Michigan Ozone Study,” J. Air and Waste Management Assoc., 42, 1313-1318.

Uthe, E.E., and J.M. Livingston, 1986:  “Lidar Extinction Methods Applied to Observations of Obscurant Events,” Appl. Opt., 25, 678-684.

 (e) Robert W. Bergstrom 

Abbreviated Currriculum Vitae

Bay Area Environmental Research Institute

560 Third Street West, Sonoma, CA 95476

Education:

B.S., Mechanical Engineering, Oregon State University (1968).

M.S. and Ph.D., Mechanical Engineering, Purdue University (1969 and 1972).  

J.D., Law, Stanford University (1983). Member of the California Bar (1983-present).

Professional Experience:
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Bergstrom, R.W. and P.B. Russell, Estimation of aerosol direct radiative effects over the mid-latitude North Atlantic from satellite and in situ measurements, Geophys. Res. Lett., 26, 1731-1734, 1999.

Sokolik, I., O.B. Toon and R.W. Bergstrom, Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths, J. Geophys. Res., 103, 8813-8826, 1998.

Pilewskie, P. et al. (including R.W. Bergstrom),  Observations of the spectral distribution of solar irradiance at the ground During SUCCESS,”  Geophys. Res. Lett., 25, 1141-1144, 1998.

Russell, P.B. S. Kinne and R.W. Bergstrom:  Aerosol climate effects: Local radiative forcing and column closure experiments,  J. Geophys.Res, 102, 9397, 1997.

8. CURRENT AND PENDING SUPPORT FOR PRINCIPAL INVESTIGATOR

Short Title
Agency/Task No.
Duration

Satellite-Sunphotometer Studies of Aerosol,…
NASA RTOP 291-01-91-45
2/2000-12/2002

Global Aerosol Climatology (GACP) & Bridge Period
NASA RTOP 622-44-75-10
10/1998-3/2003

Airborne Sunphotometry in SOLVE II
NASA RTOP 621-45-51-10
8/2002-7/2003

ACE-2 & ACE-Asia Aerosol Radiative Effect Studies
NOAA Interagency Transfer of Funds NA02AANRG0129
5/2000-4/2003 (Renewal proposed)

Composite Data Analyses for Pinatubo Volcanic Aerosols for SAGE II
NASA RTOP 621-45-51-10
10/1995-9/2002 (Renewal proposed)

SAGE III Science Team
NASA RTOP 229-10-32-00
11/1990-9/2002 (Renewal proposed)
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Travel

																		Travel

										Airfare								Per Diem								Car								co-op agreement

								Trips		$/trip		Total				Days		$/day		Total				Days		$/day		Total		Misc		Total		travel burden

		Year 1

		Science Meeting, assumed Europe

				Bergstrom**				1		1,300		1,300				5		250		1,250								0		400		$2,950		$3,466

		2003 EGS - AGU - EUG Joint Assembly,7 – 11 April 2003, Nice, FRANCE

				Schmid**				1		1,000		1,000				5		186		930								0		400		$2,330		$2,738

		IUGG,Sapporo, JAPAN, 30 June – 11 July 2003

				Russell*				1		1,300		1,300				5		259		1,295								0		300		$2,895		$2,895

				Schmid**				1		1,300		1,300				5		259		1,295								0		300		$2,895		$3,402

		AGU, San Francisco, 6 - 10 December 2002

				Redemann**				1		300		300				5		205		1,025										300		$1,625		$1,909

				Bergstrom**																										300		$300		$353

				Schmid**																										300		$300		$353

		Science Meeting, assumed Chicago

				Russell*				1		900		900				5		201		1,005								0		400		$2,305		$2,305

				Bergstrom**				1		900		900				5		201		1,005								0		400		$2,305		$2,708

		Science Meeting, assumed Europe

				Redemann**				1		1,300		1,300				5		200		1,000								0		300		$2,600		$3,055

																																Year 1 Civil Servant Total		$5,200

																																Year 1 Contractor Total		$17,983

																																Year 1 Grand Total		$23,183		$23,183

		Year 2

		Science Meeting, assumed Miami

				Bergstrom**				1		1,400		1,400				5		160		800				5		50		250		200		$2,650		$3,114

		Western Pacific Geophysics Meeting, 16 – 20 August 2004, Honolulu, HI

				Schmid**				1		1,300		1,300				5		184		920				5		50		250		200		$2,670		$3,137

				Redemann**				1		1,300		1,300				5		184		920				5		50		250		200		$2,670		$3,137

		AGU, San Francisco, December 2004

				Schmid**																										300		$300		$353

				Redemann**				1		300		300				5		205		1,025										300		$1,625		$1,909

				Bergstrom**																										300		$300		$353

		Science Meeting assumed Boston

				Russell*				1		600		600				5		205		1,025								0		200		$1,825		$1,825

				Redemann**				1		600		600				5		205		1,025								0		200		$1,825		$2,144

																																Year 2 Civil Servant Total		$1,825

																																Year 2 Contractor Total		$14,147

																																Year 2 Grand Total		$15,972		$15,972

																		Travel (cont'd)

		Year 3

		Science Meeting assumed Asia

		Western Pacific Geophysics Meeting		Bergstrom**				1		1,500		1,500				5		220		1,100								0		300		$2,900		$3,408

		European Geophysical Society (EGS) XXX General Assembly, 25 – 29 April 2005, Nice, FRANCE

		Western Pacific Geophysics Meeting		Schmid**				1		1,300		1,300				5		259		1,295								0		300		$2,895		$3,402

		AGU, San Francisco, December 2005

				Schmid**																										300		$300		$353

				Redemann**				1		300		300				5		205		1,025										300		$1,625		$1,909

				Bergstrom**																										300		$300		$353

		Science Meeting assumed Boston

				Russell*				1		600		600				5		205		1,025								0		200		$1,825		$1,825

				Redemann**				1		600		600				5		205		1,025								0		200		$1,825		$2,144

				Bergstrom**				1		600		600				5		205		1,025								0		200		$1,825		$2,144

		Science Meeting assumed San Diego

		Western Pacific Geophysics Meeting		Russell*				1		1,300		1,300				5		145		725								0		300		$2,325		$2,325

																																Year 3 Civil Servant Total		$4,150

																																Year 3 Contractor Total		$13,712

																																Year 3 Grand Total		$17,862		$17,862

		*Civil Servant

		**Contractor



&L&F&C&"Times,Regular"&12&P&R&T, &D



Total

		

								Year 1								Year 2								Year 3						TOTAL								Year 1		Year 2		Year 3

						Work		$K		Cost,				Work		$K		Cost,				Work		$K		Cost,				Work		Cost,

						Yr		/WY		$K				Yr		/WY		$K				Yr		/WY		$K				Yr		$K

		Civil Service+Contractors																																		Direct Labor		282.140		303.603		327.662

				P. B. Russell (PI)		0.44								0.44								0.44								1.32

				J. Eilers		0.37								0.37								0.37								1.11

				Technician		0.32								0.32								0.32								0.96						Other Direct Costs

																																				a. Subcontracts

				Secty/Admin (SGG,SG,S, F, etc.)		0.23								0.23								0.23								0.69						b. Consultants

				Total		1.36				0.0				1.36				0.0				1.36				0.0				4.08		0.0				c. Equipment		9.600		10.080		10.584

		F&A costs*				1.36		40.8		55.5				1.36		43.0		58.5				1.36		45.0		61.2				4.08		175.2				d. Supplies		0.000		0.000		0.000

		Co-op																																		e. Travel		17.983		14.147		13.712

				J. Livingston (Co-I, SRI)		0.25		235		58.8				0.25		247		61.7				0.25		259		64.8				0.75		185.2				f. Other		31.700		33.285		34.949

				B. Schmid (Co-I, BAERI)		0.29		142		41.2				0.29		155		44.9				0.29		169		48.9				0.87		135.0

				S. Ramirez (Programmer, BAERI)		0.78		64		49.9				0.78		69		53.8				0.78		76		58.9				2.34		162.7

				Programmer (TBD)		0.35		79		27.7				0.35		86		30.1				0.35		94		32.9				1.05		90.7				Indirect Costs (F&A)		82.947		87.397		91.575

				R. Bergstrom (Co-I, BAERI)		0.22		159		35.0				0.22		169		37.2				0.22		179		39.4				0.66		111.5

				J. Redemann (Co-I, BAERI)		0.54		129		69.7				0.54		141		75.9				0.54		153		82.8				1.62		228.4

				Total		2.43				282.1				2.43				303.6				2.43				327.7				7.29		913.4				Other Applicable Costs		4.244		4.456		4.679

		F&A costs*				2.43		11.3		27.5				2.43		11.9		28.9				2.43		12.5		30.4				7.29		86.8

																																				Subtotal--Estimated Costs		428.614		452.968		483.161

		Computation & Lab Support

				Vax, Network Fees						6.5								6.8								7.2						20.5				Less Proposed Cost Sharing		0.000		0.000		0.000

				PC Support, SW						6.5								6.8								7.2						20.5

				Computer/Peripheral Repairs						2.0								2.1								2.2						6.3				Carryover Funds		0.000		0.000		0.000

				Instrument Repairs, Maintenance						6.0								6.3								6.6						18.9

				Computer Hardware						9.6								10.1								10.6						30.3				Total Estimated Costs		428.614		452.968		483.161

				Bldg 245 Journal Subscriptions						0.7								0.7								0.8						2.2

		Contractor Travel								18.0								14.1								13.7						45.8

		Publications								10.0								10.5								11.0						31.5

		Division Reserve (1.0%)								4.2								4.5								4.7						13.4

		Total								428.6								453.0								483.2						1364.7

																																		1364.7

		*Explanation of Facilities & Administrative (F&A) Costs

				For Civil Servants F&A =G&A +ASP+Directorate Reserve

				For Co-op  F&A =0.5*ASP

				Directorate Reserve is $2.0k per workyear

				General and Administrative (G&A) Costs are those not attributable to any one project, but benefiting the entire organization.  G&A

				is calculated by dividing the ARC Institutional costs by the assigned direct workforce.  Functions funded from G&A include Safety,

				Mail Services, Fire, Security, Environmental, Center Management and Staff, Medical Services, and Administrative ADP.

				Allocated Service Pool (ASP) charges are not immediately identified to a project but can be assigned based on usage or comsumption.

				Functions funded include Computer Security, Network Replacement, ISO 9000, Utilities, Photo & Imaging, Maintenance,

				Data Communications, and Instrumentation.



&L&F&C&"Times,Regular"&12 &P&R&T, &D
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Travel

																		Travel

										Airfare								Per Diem								Car								co-op agreement

								Trips		$/trip		Total				Days		$/day		Total				Days		$/day		Total		Misc		Total		travel burden

		Year 1

		Science Meeting, assumed Europe

				Bergstrom**				1		1,300		1,300				5		250		1,250								0		400		$2,950		$3,466

		2003 EGS - AGU - EUG Joint Assembly,7 – 11 April 2003, Nice, FRANCE

				Schmid**				1		1,000		1,000				5		186		930								0		400		$2,330		$2,738

		IUGG,Sapporo, JAPAN, 30 June – 11 July 2003

				Russell*				1		1,300		1,300				5		259		1,295								0		300		$2,895		$2,895

				Schmid**				1		1,300		1,300				5		259		1,295								0		300		$2,895		$3,402

		AGU, San Francisco, 6 - 10 December 2002

				Redemann**				1		300		300				5		205		1,025										300		$1,625		$1,909

				Bergstrom**																										300		$300		$353

				Schmid**																										300		$300		$353

		Science Meeting, assumed Chicago

				Russell*				1		900		900				5		201		1,005								0		400		$2,305		$2,305

				Bergstrom**				1		900		900				5		201		1,005								0		400		$2,305		$2,708

		Science Meeting, assumed Europe

				Redemann**				1		1,300		1,300				5		200		1,000								0		300		$2,600		$3,055

																																Year 1 Civil Servant Total		$5,200

																																Year 1 Contractor Total		$17,983

																																Year 1 Grand Total		$23,183		$23,183

		Year 2

		Science Meeting, assumed Miami

				Bergstrom**				1		1,400		1,400				5		160		800				5		50		250		200		$2,650		$3,114

		Western Pacific Geophysics Meeting, 16 – 20 August 2004, Honolulu, HI

				Schmid**				1		1,300		1,300				5		184		920				5		50		250		200		$2,670		$3,137

				Redemann**				1		1,300		1,300				5		184		920				5		50		250		200		$2,670		$3,137

		AGU, San Francisco, December 2004

				Schmid**																										300		$300		$353

				Redemann**				1		300		300				5		205		1,025										300		$1,625		$1,909

				Bergstrom**																										300		$300		$353

		Science Meeting assumed Boston

				Russell*				1		600		600				5		205		1,025								0		200		$1,825		$1,825

				Redemann**				1		600		600				5		205		1,025								0		200		$1,825		$2,144

																																Year 2 Civil Servant Total		$1,825

																																Year 2 Contractor Total		$14,147

																																Year 2 Grand Total		$15,972		$15,972

																		Travel (cont'd)

		Year 3

		Science Meeting assumed Asia

		Western Pacific Geophysics Meeting		Bergstrom**				1		1,500		1,500				5		220		1,100								0		300		$2,900		$3,408

		European Geophysical Society (EGS) XXX General Assembly, 25 – 29 April 2005, Nice, FRANCE

		Western Pacific Geophysics Meeting		Schmid**				1		1,300		1,300				5		259		1,295								0		300		$2,895		$3,402

		AGU, San Francisco, December 2005

				Schmid**																										300		$300		$353

				Redemann**				1		300		300				5		205		1,025										300		$1,625		$1,909

				Bergstrom**																										300		$300		$353

		Science Meeting assumed Boston

				Russell*				1		600		600				5		205		1,025								0		200		$1,825		$1,825

				Redemann**				1		600		600				5		205		1,025								0		200		$1,825		$2,144

				Bergstrom**				1		600		600				5		205		1,025								0		200		$1,825		$2,144

		Science Meeting assumed San Diego

		Western Pacific Geophysics Meeting		Russell*				1		1,300		1,300				5		145		725								0		300		$2,325		$2,325

																																Year 3 Civil Servant Total		$4,150

																																Year 3 Contractor Total		$13,712

																																Year 3 Grand Total		$17,862		$17,862

		*Civil Servant

		**Contractor



&L&F&C&"Times,Regular"&12&P&R&T, &D



Total

		

								Year 1								Year 2								Year 3						TOTAL								Year 1		Year 2		Year 3

						Work		$K		Cost,				Work		$K		Cost,				Work		$K		Cost,				Work		Cost,

						Yr		/WY		$K				Yr		/WY		$K				Yr		/WY		$K				Yr		$K

		Civil Service+Contractors																																		Direct Labor		282.140		303.603		327.662

				P. B. Russell (PI)		0.44								0.44								0.44								1.32

				J. Eilers		0.37								0.37								0.37								1.11

				Technician		0.32								0.32								0.32								0.96						Other Direct Costs

																																				a. Subcontracts

				Secty/Admin (SGG,SG,S, F, etc.)		0.23								0.23								0.23								0.69						b. Consultants

				Total		1.36				0.0				1.36				0.0				1.36				0.0				4.08		0.0				c. Equipment		9.600		10.080		10.584

		F&A costs*				1.36		40.8		55.5				1.36		43.0		58.5				1.36		45.0		61.2				4.08		175.2				d. Supplies		0.000		0.000		0.000

		Co-op																																		e. Travel		17.983		14.147		13.712

				J. Livingston (Co-I, SRI)		0.25		235		58.8				0.25		247		61.7				0.25		259		64.8				0.75		185.2				f. Other		31.700		33.285		34.949

				B. Schmid (Co-I, BAERI)		0.29		142		41.2				0.29		155		44.9				0.29		169		48.9				0.87		135.0

				S. Ramirez (Programmer, BAERI)		0.78		64		49.9				0.78		69		53.8				0.78		76		58.9				2.34		162.7

				Programmer (TBD)		0.35		79		27.7				0.35		86		30.1				0.35		94		32.9				1.05		90.7				Indirect Costs (F&A)		82.947		87.397		91.575

				R. Bergstrom (Co-I, BAERI)		0.22		159		35.0				0.22		169		37.2				0.22		179		39.4				0.66		111.5

				J. Redemann (Co-I, BAERI)		0.54		129		69.7				0.54		141		75.9				0.54		153		82.8				1.62		228.4

				Total		2.43				282.1				2.43				303.6				2.43				327.7				7.29		913.4				Other Applicable Costs		4.244		4.456		4.679

		F&A costs*				2.43		11.3		27.5				2.43		11.9		28.9				2.43		12.5		30.4				7.29		86.8

																																				Subtotal--Estimated Costs		428.614		452.968		483.161

		Computation & Lab Support

				Vax, Network Fees						6.5								6.8								7.2						20.5				Less Proposed Cost Sharing		0.000		0.000		0.000

				PC Support, SW						6.5								6.8								7.2						20.5

				Computer/Peripheral Repairs						2.0								2.1								2.2						6.3				Carryover Funds		0.000		0.000		0.000

				Instrument Repairs, Maintenance						6.0								6.3								6.6						18.9

				Computer Hardware						9.6								10.1								10.6						30.3				Total Estimated Costs		428.614		452.968		483.161

				Bldg 245 Journal Subscriptions						0.7								0.7								0.8						2.2

		Contractor Travel								18.0								14.1								13.7						45.8

		Publications								10.0								10.5								11.0						31.5

		Division Reserve (1.0%)								4.2								4.5								4.7						13.4

		Total								428.6								453.0								483.2						1364.7

																																		1364.7

		*Explanation of Facilities & Administrative (F&A) Costs

				For Civil Servants F&A =G&A +ASP+Directorate Reserve

				For Co-op  F&A =0.5*ASP

				Directorate Reserve is $2.0k per workyear

				General and Administrative (G&A) Costs are those not attributable to any one project, but benefiting the entire organization.  G&A

				is calculated by dividing the ARC Institutional costs by the assigned direct workforce.  Functions funded from G&A include Safety,

				Mail Services, Fire, Security, Environmental, Center Management and Staff, Medical Services, and Administrative ADP.

				Allocated Service Pool (ASP) charges are not immediately identified to a project but can be assigned based on usage or comsumption.

				Functions funded include Computer Security, Network Replacement, ISO 9000, Utilities, Photo & Imaging, Maintenance,

				Data Communications, and Instrumentation.



&L&F&C&"Times,Regular"&12 &P&R&T, &D
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Travel

																		Travel

										Airfare								Per Diem								Car								co-op agreement

								Trips		$/trip		Total				Days		$/day		Total				Days		$/day		Total		Misc		Total		travel burden

		Year 1

		Science Meeting, assumed Europe

				Bergstrom**				1		1,300		1,300				5		250		1,250								0		400		$2,950		$3,466

		2003 EGS - AGU - EUG Joint Assembly,7 – 11 April 2003, Nice, FRANCE

				Schmid**				1		1,000		1,000				5		186		930								0		400		$2,330		$2,738

		IUGG,Sapporo, JAPAN, 30 June – 11 July 2003

				Russell*				1		1,300		1,300				5		259		1,295								0		300		$2,895		$2,895

				Schmid**				1		1,300		1,300				5		259		1,295								0		300		$2,895		$3,402

		AGU, San Francisco, 6 - 10 December 2002

				Redemann**				1		300		300				5		205		1,025										300		$1,625		$1,909

				Bergstrom**																										300		$300		$353

				Schmid**																										300		$300		$353

		Science Meeting, assumed Chicago

				Russell*				1		900		900				5		201		1,005								0		400		$2,305		$2,305

				Bergstrom**				1		900		900				5		201		1,005								0		400		$2,305		$2,708

		Science Meeting, assumed Europe

				Redemann**				1		1,300		1,300				5		200		1,000								0		300		$2,600		$3,055

																																Year 1 Civil Servant Total		$5,200

																																Year 1 Contractor Total		$17,983

																																Year 1 Grand Total		$23,183		$23,183

		Year 2

		Science Meeting, assumed Miami

				Bergstrom**				1		1,400		1,400				5		160		800				5		50		250		200		$2,650		$3,114

		Western Pacific Geophysics Meeting, 16 – 20 August 2004, Honolulu, HI

				Schmid**				1		1,300		1,300				5		184		920				5		50		250		200		$2,670		$3,137

				Redemann**				1		1,300		1,300				5		184		920				5		50		250		200		$2,670		$3,137

		AGU, San Francisco, December 2004

				Schmid**																										300		$300		$353

				Redemann**				1		300		300				5		205		1,025										300		$1,625		$1,909

				Bergstrom**																										300		$300		$353

		Science Meeting assumed Boston

				Russell*				1		600		600				5		205		1,025								0		200		$1,825		$1,825

				Redemann**				1		600		600				5		205		1,025								0		200		$1,825		$2,144

																																Year 2 Civil Servant Total		$1,825

																																Year 2 Contractor Total		$14,147

																																Year 2 Grand Total		$15,972		$15,972

																		Travel (cont'd)

		Year 3

		Science Meeting assumed Asia

		Western Pacific Geophysics Meeting		Bergstrom**				1		1,500		1,500				5		220		1,100								0		300		$2,900		$3,408

		European Geophysical Society (EGS) XXX General Assembly, 25 – 29 April 2005, Nice, FRANCE

		Western Pacific Geophysics Meeting		Schmid**				1		1,300		1,300				5		259		1,295								0		300		$2,895		$3,402

		AGU, San Francisco, December 2005

				Schmid**																										300		$300		$353

				Redemann**				1		300		300				5		205		1,025										300		$1,625		$1,909

				Bergstrom**																										300		$300		$353

		Science Meeting assumed Boston

				Russell*				1		600		600				5		205		1,025								0		200		$1,825		$1,825

				Redemann**				1		600		600				5		205		1,025								0		200		$1,825		$2,144

				Bergstrom**				1		600		600				5		205		1,025								0		200		$1,825		$2,144

		Science Meeting assumed San Diego

		Western Pacific Geophysics Meeting		Russell*				1		1,300		1,300				5		145		725								0		300		$2,325		$2,325

																																Year 3 Civil Servant Total		$4,150

																																Year 3 Contractor Total		$13,712

																																Year 3 Grand Total		$17,862		$17,862

		*Civil Servant

		**Contractor
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Total

		

								Year 1								Year 2								Year 3						TOTAL								Year 1		Year 2		Year 3

						Work		$K		Cost,				Work		$K		Cost,				Work		$K		Cost,				Work		Cost,

						Yr		/WY		$K				Yr		/WY		$K				Yr		/WY		$K				Yr		$K

		Civil Service+Contractors																																		Direct Labor		282.140		303.603		327.662

				P. B. Russell (PI)		0.44								0.44								0.44								1.32

				J. Eilers		0.37								0.37								0.37								1.11

				Technician		0.32								0.32								0.32								0.96						Other Direct Costs

																																				a. Subcontracts

				Secty/Admin (SGG,SG,S, F, etc.)		0.23								0.23								0.23								0.69						b. Consultants

				Total		1.36				0.0				1.36				0.0				1.36				0.0				4.08		0.0				c. Equipment		9.600		10.080		10.584

		F&A costs*				1.36		40.8		55.5				1.36		43.0		58.5				1.36		45.0		61.2				4.08		175.2				d. Supplies		0.000		0.000		0.000

		Co-op																																		e. Travel		17.983		14.147		13.712

				J. Livingston (Co-I, SRI)		0.25		235		58.8				0.25		247		61.7				0.25		259		64.8				0.75		185.2				f. Other		31.700		33.285		34.949

				B. Schmid (Co-I, BAERI)		0.29		142		41.2				0.29		155		44.9				0.29		169		48.9				0.87		135.0

				S. Ramirez (Programmer, BAERI)		0.78		64		49.9				0.78		69		53.8				0.78		76		58.9				2.34		162.7

				Programmer (TBD)		0.35		79		27.7				0.35		86		30.1				0.35		94		32.9				1.05		90.7				Indirect Costs (F&A)		82.947		87.397		91.575

				R. Bergstrom (Co-I, BAERI)		0.22		159		35.0				0.22		169		37.2				0.22		179		39.4				0.66		111.5

				J. Redemann (Co-I, BAERI)		0.54		129		69.7				0.54		141		75.9				0.54		153		82.8				1.62		228.4

				Total		2.43				282.1				2.43				303.6				2.43				327.7				7.29		913.4				Other Applicable Costs		4.244		4.456		4.679

		F&A costs*				2.43		11.3		27.5				2.43		11.9		28.9				2.43		12.5		30.4				7.29		86.8

																																				Subtotal--Estimated Costs		428.614		452.968		483.161

		Computation & Lab Support

				Vax, Network Fees						6.5								6.8								7.2						20.5				Less Proposed Cost Sharing		0.000		0.000		0.000

				PC Support, SW						6.5								6.8								7.2						20.5

				Computer/Peripheral Repairs						2.0								2.1								2.2						6.3				Carryover Funds		0.000		0.000		0.000

				Instrument Repairs, Maintenance						6.0								6.3								6.6						18.9

				Computer Hardware						9.6								10.1								10.6						30.3				Total Estimated Costs		428.614		452.968		483.161

				Bldg 245 Journal Subscriptions						0.7								0.7								0.8						2.2

		Contractor Travel								18.0								14.1								13.7						45.8

		Publications								10.0								10.5								11.0						31.5

		Division Reserve (1.0%)								4.2								4.5								4.7						13.4

		Total								428.6								453.0								483.2						1364.7

																																		1364.7

		*Explanation of Facilities & Administrative (F&A) Costs

				For Civil Servants F&A =G&A +ASP+Directorate Reserve

				For Co-op  F&A =0.5*ASP

				Directorate Reserve is $2.0k per workyear

				General and Administrative (G&A) Costs are those not attributable to any one project, but benefiting the entire organization.  G&A

				is calculated by dividing the ARC Institutional costs by the assigned direct workforce.  Functions funded from G&A include Safety,

				Mail Services, Fire, Security, Environmental, Center Management and Staff, Medical Services, and Administrative ADP.

				Allocated Service Pool (ASP) charges are not immediately identified to a project but can be assigned based on usage or comsumption.

				Functions funded include Computer Security, Network Replacement, ISO 9000, Utilities, Photo & Imaging, Maintenance,

				Data Communications, and Instrumentation.
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