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  Abstract.  A study was carried out to investigate the utility of airborne hyperspectral 

and satellite L-band Synthetic Aperture Radar (SAR) data for estimating fractional 

coverages of herbaceous, coastal scrub, and bare ground cover types on the central 

California coast.  Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery 

collected in September of 2008 and Phased Array L-band SAR (PALSAR) (HH- and 

HV-polarizations) captured in April and July of 2008 were combined for vegetation cover 

mapping.  Hyperspectral features, computed as AVIRIS indices (NDVI, TCARI/OSAVI, 

and PRI), and textural information (energy, contrast, homogeneity, and fractal dimension) 

produced by L-band SAR were fused together to generate a new feature space.  We used 

global Ordinary Least Squares (OLS) linear regression to integrate and decompose the 

new feature space for fractional vegetation mapping.  Ground measurements of fractional 

cover were collected from plots located within the U.S. Forest Service’s Brazil Ranch 

study site for validation of the OLS model predictions.  Significant linear relationships 

were found between fractional cover mapping from remote sensing and the ground-truth 

data.  The estimation accuracy of fractional coverage mapping from remote sensing in 

terms of root mean square error (RMSE) was 17%, 12%, and 10%, for the herbaceous, 

coastal scrub, and bare ground covers, respectively.  Decomposition results showed that 

textural information from L-band SAR strongly supported herbaceous and coastal scrub 

fractional mapping, while indices features from AVIRIS significantly improved mapping 

of herbaceous cover and bare ground. 
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1. INTRODUCTION 

 

Coastal shrub ecosystems in California have a high degree of biological diversity 

and endemism, and provide critical habitat for a large number of rare, endangered, and 

threatened animal and plant species [1].  These mixed herbaceous-shrub communities are 

of interest because they dominate the central and southern coastal regions of California, 

but have been largely overlooked as a key biomass carbon component.  Coastal scrub 

covers 7% of the region and is the forth most extensive vegetation class in the state. 

 

Our study focused on fractional vegetation coverage mapping for herbaceous-

shrub ecotypes on the Big Sur coast in Monterey County, CA.  The regional-scale 

products of such remote sensing can uniquely support wildlife habitat mapping and 

biogeochemical cycling studies.  Visible and near-infrared (V/NIR) imagery from 

airborne and spaceborne remote sensing have been used in previous studied to investigate 

the herbaceous-shrub ecotype [2], [3].  Hyperspectral imagery has been widely used for 

vegetation cover mapping [4]. There has been increasing interest in using Synthetic 

Aperture Radar (SAR) data [5]-[7], and in combining hyperspectral and SAR data for 

improved vegetation mapping and estimation of vegetation structural variables [8]-[11]. 

 

Previous studies with satellite SAR for observing vegetation coverage have 

indicated that backscatter intensity is of little use for forest and shrubland detection at C-

band (6 cm) and S-band (10 cm) wavelengths [10]-[12]. Yatabe [12] compared the 

research applications of SAR at different radar frequencies (C-, S- and L-band) and found 



 4 

that L-band (24 cm wavelength) was the most effective for discriminating forest and 

shrubland. Jouan [9] reported on fusion of SAR and hyperspectral imagery to map land 

cover by using the evidential fusion method. Blaschke [13] extracted information from 

SAR and hyperspectral data by an object-based approach. Huang [10] fused AirSAR, 

AVIRIS and Landsat data for fractional cover mapping in Yellowstone National Park.  

 

In this study, we investigated the fusion of hyperspectral imagery and L-band 

SAR data for fractional coverage mapping of herbaceous-shrub ecotype in central 

California.  L-band SAR data are available from the Phased Array L-band SAR 

(PALSAR) instrument, which was installed on the Advanced Land Observing Satellite 

(ALOS). Hyperspectral imagery from the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) was collected by NASA Jet Propulsion Laboratory (JPL) in 2008.  

A new feature space was created by combining spectra information from a standard 

spectral library, vegetation indices from hyperspectral imagery, and textural information 

from L-band SAR data.  Fractional cover products for herbaceous, coastal scrub, and bare 

ground were produced by decomposing the new feature space. 

 

2. STUDY SITE 

 

The primary research site was located at the Brazil Ranch (center coordinates: 

latitude 36.35° N, longitude 121.88° W) near Big Sur, California (Fig. 1).  The Brazil 

Ranch is named after Tony and Margaret Brazil and the pioneer family that worked to 

establish the land as a farm, ranch, as well as a dairy operation in the early 20th century.  
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Today, the property serves as a primary research site for the U. S. Forest Service to 

monitor and manage vegetation, wildlife, water quality, and sensitive coastal habitats. 

 

The Big Sur region is characterized by a Mediterranean climate with rounded 

ridges, steep sides, and narrow canyons. The terrain is rugged and undulating with the 

steepest elevation gradients on the Pacific U. S. coast, ranging (over just several km 

inland) from sea-level up to 1570 meters.  Rainfall varies from 40 to 150 cm throughout 

the range, with the most on the higher mountains in the north.  The majority of all 

precipitation falls in the winter (November-March).  During the summer, fog and low 

clouds are frequent along the coast. Mean annual temperature ranges from 10 to 15°C.   

 

Drier, southeast-facing slopes share a relatively equal distribution of coyote bush 

(Baccharis pilularis) and California coffeeberry (Rhamnus californica) along with some 

California sagebrush (Artemisia californica) (Ecological Subregions of California, 2011). 

The coastal scrub community is usually a successional plant community that, in the 

absence of fire, gradually moves into herbaceous cover where the soil depth transitions 

from the shallowest to intermediate depth. The herbaceous plant community includes 

California annual grassland series and California oatgrass series. Coastal sage scrub and 

chaparral are known as secondary pioneer plant in California grasslands, which invade 

grassland and increase in the absence of fire or grazing.  We noted a propagation of the 

introduced Cape ivy (Delairea odorata) during our field work. Cape ivy, a vine native to 

South Africa, has become a significant threat to coastal scrub. 

[Insert Fig. 1 here] 
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3. REMOTE SENSING DATASETS 

 

Hyperspectral AVIRIS imagery provided information related to the biochemical 

state of the herbaceous-coastal scrub ecotype. AVIRIS collects data in 224 continuous 

channels of approximately 10-nanometer bandpass over the spectral-wavelength range of 

0.35-2.50 µm (from visible light to near-infrared). A nominal pixel size of 3.5 m was 

collected by NASA/JPL on September 24, 2008, at approximately 9:40 a.m. local time. 

The AVIRIS imagery was orthocorrected by NASA/JPL using a full three-dimensional 

ray tracing method [14]. Each pixel in the image was individually ray traced using the 

best-estimate of sensor location and attitude until it intersected the DEM. The spatial 

fidelity of the data was much improved from previous datasets, especially in areas of 

rugged and variable across-track terrain, resulting in an accuracy of one pixel. 

 

The AVIRIS imagery was captured mainly for the purpose of assessing the burn 

severity of Big Sur wildfires that occurred in 2008 (but which did not spread into the 

Brazil Ranch property).  Landsat 5 Thematic Mapper (TM) data were used to generate 

boundaries of the 2008 Big Sur wildfires and to clip the burnt area from the AVIRIS data 

set.  Two cloud-free TM scenes (Path 43, Row 35) were selected from May 13, 2008 

(pre-fire) and September 18, 2008 (post-fire).  

 

An IKONOS image (acquired on March 08, 2007) was used to visually select 8 

vegetation plots, since cliffs and steep slopes at the site made these areas otherwise 
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inaccessible for in-situ survey assessment.  Brovey transform (resolution merge) was 

applied on the selected IKONOS image to merge multispectral and panchromatic bands 

[15], and improve the spatial resolution to nearly 1 meter in the VIS/NIR bands.  

 

PALSAR measurements were analyzed for sensitivity to the surface geometry and 

the dielectric constant of the illuminated surface.  ALOS was launched in January 2006 

by Japan Aerospace Exploration Agency (JAXA), which offered a Quad-polarization 

operation mode.  We acquired PALSAR data over the research area for April 14, 2008 

with a Fine Beam Single polarization (FBS, look angle 34.3˚, HH-polarization, and a 

6.25m×6.25m ground resolution) and for July 18, 2008 with Fine Beam Double 

Polarization (FBD, look angle 34.3˚, HV-polarization, ground resolution approximately 

12.5m×12.5m). In FBS mode, ALOS/PALSAR was operated in HH-polarization with a 

bandwidth of 28 MHz.  In FBD mode, the polarization option was HH/HV at 14-MHz 

bandwidth. The operating sensor frequency is 1.27 GHz, which corresponds to a 

wavelength of 23.6 cm (L-band).  

 

We acquired PALSAR data from one of the ALOS data nodes at the Alaska 

Satellite Facility (ASF). The SAR dataset was preprocessed to a 1.5 product level.  The 

ASF performed the following steps: range compression using Fast Fourier Transform 

(FFT), secondary range compression using range migration compensation, range 

migration curvature corrections, azimuth compression, multi-look processing, and 

conversion from slant to ground range [16]. 
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4. METHODS 

 

4.1. Field survey methods 

From September through December of 2010, we inventoried 43 vegetation plots 

within Brazil Ranch, including 8 plots that were visually selected for high bare ground 

cover from the 1-m IKONOS imagery (due to steep slopes that made the survey plots 

otherwise inaccessible) [17].  We established circular plots area with a radius of 17 m.  

Plots were set up by marking a center point and estimating vegetation percentage within a 

17 m radius around the center point. Each plot was divided into four quads to improve the 

precision. Four field-crew members each independently estimated vegetation fraction 

percentages (herbaceous, coastal scrub and bare ground) in each quad by ocular 

estimation.  Ocular estimation is an accurate and widely employed method for vegetation 

evaluation [11], [18]-[20].  We compiled and averaged four quads to arrive at a final 

vegetation cover estimation for each plot.  The center location of each plot was 

positioned by Garmin GPSMAP 60CX unit in carrier phase (set to maximize spatial 

accuracy). The coordinates of plot center were differentially corrected by the National 

Geodetic Survey using the network of base station data (NGS, 

http://www.ngs.noaa.gov/CORS/Data.html). 

 

4.2. Wildfire boundaries from TM imagery 

We used a remotely sensed burn severity index called Differenced Normalized 

Burn Ratio (dNBR) derived from TM data to delineate the 2008 wildfire boundary.  The 

TM sensor is appropriate for burn severity analysis because it records near infrared (NIR) 
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and middle infrared (MIR) reflectance in bands 4 and 7, respectively. TM4 is primarily 

dependent on the refractive index of leaf morphology and discontinuities within the leaf 

[21] while TM7 is sensitive to water content in both soils and vegetation [22].  

 

The TM images were converted into radiance and then at-sensor reflectance using 

instrument gains and offsets. The MODTRAN4 model was further used for atmosphere 

correction [25].  The spectral index of NBR was calculated from TM4 and TM7 (with 

central wavelength of 0.83 and 2.22 µm, respectively) bands according to [Eq.(1)] [23], 

[24]. 

 

NBR = (NIR - MIR) / (NIR + MIR)  (1)  

dNBR is the multi-temporal difference of pre- and post-fire NBR [23], defined as: 

dNBR = NBRprefire – NBRpostfire  (2) 

 

4.3. Hyperspectral image processing 

The AVIRIS dataset was clipped to the 2008 dNBR fire boundary.  We converted 

AVIRIS radiance to reflectance via atmospheric correction using the FLAASH algorithm.  

The FLAASH method is based on observations by Kaufman [26] of a nearly fixed ratio 

between the reflectances of pixels at 660nm and 2100 nm. It performs a second and final 

MODTRAN4 calculation loop over water.   

 

Atmospherically corrected AVIRIS data were used to calculate vegetation indices. 

Four indices (NDVI, OSAVI, TCARI, and PRI) were selected in this study to generate 
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spectral space for extraction of vegetation information (Eq. (3), (4), (5), and (6)).  These 

indices have been related to Leaf Area Index (LAI) and vegetation biochemical state, 

including chlorophyll absorption or other specific features. 

 

The Normalized Difference Vegetation Index (NDVI) is a measure of vegetation 

greenness cover [27], [28], and can be used to discriminate vegetated from bare ground. 

AVIRIS Optimized Soil Adjusted Vegetation Index (OSAVI) represents improvements in 

the dynamic range or decreased sensitivity to differences in soil backgrounds [29].  The 

chief advantages of OSAVI are its simplified formulation and the lack of a requirement 

for a priori knowledge of the soil type.  This index is suitable for vegetation applications 

since the residual variation in OSAVI is evenly spread across the full range of vegetation 

index response. 

 

AVIRIS Transformed Chlorophyll Absorption in Reflectance Index (TCARI) 

provides information to estimate the active radiation absorbed for photosynthesis. The 

combination of TCARI/OSAVI permits a qualitative estimation of the chlorophyll 

content of leaves [30]. AVIRIS Photochemical Reflectance Index (PRI) measures 

xanthophyll activity, which is usually applied to vegetation detection prior to senescence 

[32]. 

 

NDVI = (R831 – R638) / (R831 + R638)      (3) 

OSAVI = (1+ 0.16) × (R800 – R670) / (R800 + R670 + 0.16)   (4) 

TCARI= 3 × [(R700 – R670) – 0.2 × (R700 – R550) × (R700 / R670)]  (5) 
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PRI = (R531 – R570) / (R531 + R570)      (6) 

 

 

4.5. PALSAR processing 

 

  Radiometric calibration 

Radiometric calibration of PALSAR data was carried out using the following 

method [Eq. (7)]. Digital numbers (the amplitude of the backscattered signal) of 

PALSAR data were transformed into a backscattering coefficient (in decibels). 

 

  (7)   

where the calibration constant for PALSAR L1.5 products is Kdb= -83 dB. 

 

Radiometric terrain correction 

Radar backscatter is significantly impacted by terrain undulations. Slope-induced 

distortions can have a direct impact on radiometric quality [6], [32], [33]. The correction 

of these effects becomes important when quantitative image analysis is performed with 

respect to geo- and biophysical parameters [34].  A 10-m resolution Digital Elevation 

Model (DEM) was used to correct terrain induced distortions (United States Geological 

Survey (USGS), National Elevation Dataset (NED)).  Based on a lookup table describing 

the transformation between the radar and map geometry, Ulander [37] developed an 

approach (Eq. (8), and (9)) to minimize the dependence on terrain undulation [34], [36]. 

The lookup table was generated using the NED DEM and the orbital information of the 
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PALSAR data. The normalized, terrain-corrected radar backscattering coefficient is 

defined as:  

 (8) 

where is the averaged radar brightness and  is the projection angle between the 

surface normal and the image plane normal, which varies between 0º and 90º, and θloc is 

the local incidence angle.  We note that is the complementary angle to the smallest 

angle between the surface normal and the image plane. 

 

Calculation of is given by Eq. (9) 

 (9) 

where  is the local incidence angle of a horizontal surface patch (i.e. ellipsoidal 

incidence angle), and are terrain slope and aspect of the surface relative the vertical 

and azimuth directions, which are calculated from the DEM [37]. 

 

We note that, in the correction for slope-induced backscattering distortion, the 

backscattering coefficient tends to vary (decrease) with increasing local incidence angle 

( ) in the non-radiometric corrected (but terrain-corrected) curve, while the radiometric-

corrected data shows a stable backscattering coefficient over the local incidence angle 

(Fig. 2).  

 

[Insert Fig. 2 here] 
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The speckle noise in PALSAR backscattering coefficients was minimized by 

applying Lee-Sigma filters with a 5 × 5 moving-window before textural information 

extraction  [38].  Radiometric corrected PALSAR backscattering coefficients (HH and 

HV) were co-registered with the AVIRIS imagery and resampled at the same spatial 

resolution as AVIRIS. Co-registration accuracy was estimated to be 0.5 pixels.  

 

Textural feature extraction from PALSAR data 

Three texture features called energy, contrast, homogeneity were extracted from 

PALSAR backscattering coefficients by using the method of co-occurrence matrices 

(GLCM).  The fractal dimension of PALSAR backscattering coefficients was extracted 

using the triangular prism surface area method (TPSAM) [39].  These four features were 

generated from HH- and HV-polarizations comprising a set of 2×4 bands.  

 

Energy is also called the angular second moment [40], which measures textural 

uniformity. Contrast is the spatial frequency that represents the amount of the local 

variation in the scene.  Local homogeneity is called the inverse difference moment.  For a 

specific vegetation area, local homogeneity and contrast are inversely correlated, while 

energy is kept constant.  On the other hand, local homogeneity and energy are inversely 

correlated, while contrast remains constant.  Fractals measure the roughness attributes in 

the SAR data. 

 

4.6. Classification scheme 

Endmember selection 
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Image pixels within the Brazil Ranch study area were visually separated into two 

types based on their land cover composition: pure pixels covered entirely by a single 

cover class (herbaceous, coastal scrub, or bare ground), and mixed pixels composed of 

combinations of the above-mentioned classes. Three endmembers were identified from 

the pure pixels and classified by using a priori information from a spectral library [22]. 

 

The following steps were performed to reach aforementioned outcome: First, we 

used rotation transforms on AVIRIS imagery.  Minimum Noise Fraction Transform 

(MNF) is an algorithm designed to determine the inherent dimensionality of 

hyperspectral imagery, segregate noise in the data, and reduce the computational 

requirements for subsequent processing [41].  A threshold value of 0.27 was selected 

based on the plots of spatial coherence and eigenvalues.  This threshold identified the 

first 39 bands in MNF space to be used for spectral information extraction, while the 

remaining bands were considered noise. 

 

Next, we used the Pixel Purity Index (PPI) [42] to find the most spectrally pure 

pixels in the MNF space. The PPI was computed by repeatedly projecting n-D scatter 

plots onto a random unit vector.  Each resulting value corresponded to the number of 

times that a pixel was recorded as extreme. A threshold value of 20 was selected as 

critical value for space partitioning in our study area. 

 

Lastly, the pure pixels were separated into three classes. The spectral library 

provided by Elvidge [22] was selected as a priori information to perform supervised 
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Bayes Maximum Likelihood classification [43].  The Elvidge spectral library was 

measured as hemispherical reflectance using a Beckman UV-5240 spectrophotometer at 

Jasper Ridge in central California, which included all the vegetation species (in both dry 

and wet seasons) also found in the Brazil Ranch study site.  Each pure pixel was 

categorized as one of the three classes, namely, herbaceous, coastal scrub, and bare 

ground (Fig. 3). 

[Insert Fig. 3 here] 

 

Construction of the new feature space 

Pixels with a PPI value less than 20 were identified and a new 3-D feature space 

was constructed to combine spectra information, index features, and L-band textural 

information for fractional decomposition. The new feature space was composed of 50 

bands (39 bands generated by MNF from AVIRIS imagery, 3 bands from AVIRIS 

vegetation indices, and 2×4 texture bands from PALSAR data).  

 

For the first dimension, basic spectral information was provided by the 39 MNF 

bands. Examination of the vegetation and soil information contained in the MNF-

transformed data, together with the associated eigenvalues, indicated that 94% of the total 

statistical variance in the AVIRIS imagery was contained in the first 39 MNF bands of 

the image.  For the second dimension, phenological characteristics of vegetation were 

observed in all three indices.  Annual herbaceous species dominate the great majority of 

the grasslands in Big Sur.  Most of the herbaceous materials had senesced, and coastal 

scrub was still green or light-green when our AVIRIS data was acquired. Peak green 
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season in the central coast region of California occurs from around February 15 to March 

20, after which herbaceous vegetation cover gradually turns brown.  TCARI/OSAVI and 

PRI provided the needed information for phenological vegetation discrimination.  The 

ratio of TCARI/OSAVI is especially useful when herbaceous vegetation, coastal scrub, 

and bare ground were co-located in a pixel.  For the third dimension, the 2x4 texture 

features from SAR data were used [44], [45].  

 

Decomposition from OLS 

OLS regression is widely used to infer linear regression model parameters in the 

remote sensing literature [46]. We applied OLS regression on the 3-D feature space 

constructed from 50 bands.  Signatures of the pure pixels (assigned 100% coverage of 

either herbaceous, coastal scrub, or bare ground) were used as explanatory variables in 

the OLS regression with each mixed pixel's spectral signature as the response variable. 

 

The generalized decomposition model is described as Eq. (10): 

 

  (10) 

where  is the modeled mixed pixel feature vector in the new combined feature 

space, s are coefficients, s refer to herbaceous vegetation, coastal scrub, and bare 

ground respectively, and  is random error term. 

 

Three continuous raster layers were generated by OLS analysis as the proportion 

of each cover type represented in the mixed pixels.  A composite fractional coverage map 
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was generated from the three mixed raster layers merged with the pure pixels.  This 

overall approach is summarized in a general flow chart (Fig. 4). 

[Insert Fig. 4 here] 

 

5. RESULTS 

 

5.1. Fractional vegetation mapping 

The mean value of herbaceous cover was higher at Brazil Ranch than the other 

two cover types at around 51.6%, and was generally highest on the south-facing ridgetop 

locations. The percentage of herbaceous cover declined gradually with decreasing 

elevation toward the northeast (Fig. 5).  Coastal scrub was distributed more across the 

valley and the gently sloping areas.  The mean cover value for coastal scrub at the site 

was 21.9%.  Bare ground often coexisted with herbaceous cover on ridgetops, but we also 

detected scattered patches of coastal scrub on the steep slopes.  

[Insert Fig. 5 here] 

 

In order to evaluate the landscape patterns more readily, the three maps (Fig. 5) 

were reclassed into five continuous categories of fractional cover at the 3.5 m resolution: 

less than 10%, 10.01-25.00%, 25.01-45.00%, 45.01-75.00%, and more than 75.01%. A 

histogram comparison of the three cover types (Fig. 6) showed that, for the pixels having 

a coverage fraction of 45% or greater of any single cover type, herbaceous vegetation 

predominated in those areas.  For the pixels having a coverage fraction of 10% or less of 

any single cover type, coastal scrub predominated in those areas.  For the pixels having a 
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coverage fraction between 10% and 45% of any single cover type, bare ground 

predominated. 

 [Insert Fig. 6 here] 

 

Having produced a composite map of the herbaceous, coastal scrub, and bare 

ground percent for the study area at a resolution of 3.5 m (Fig. 6), an Iso-clustering 

algorithm [43], [47] was further used to characterize the landscape pattern.  Five ecotypes 

were determined by the combination of different cover percentages (Fig. 7).  The first 

three ecotypes were dominated by the individual coverages of herbaceous, coastal scrub, 

and bare ground with percentage of 86%, 89%, and 77% respectively.  The fourth mixed 

ecotype was composed of herbaceous (more than 50%), coastal scrub (around 30%), and 

bare ground (less than 20%). The fifth ecotype was dominated by a combination of 

herbaceous (56%) and bare ground (41%). The pattern characteristics were also shown in 

Fig. 6 for the five ecotypes. Ecotype 4 dominated by herbaceous and coastal scrub was 

distributed widely across the south-facing slope areas. More bare ground areas were 

mixed in ecotype 5 than that in ecotype 4.  The microclimate characteristics that 

influenced ecotype 5 were most apparent on north-facing slope areas. 

 [Insert Fig. 7 here] 

 

5.2. Fractional coverage accuracy assessment 

We compared field survey estimations of vegetation fractional cover to remote 

sensing predictions from a fusion of SAR and hyperspectral imagery (Fig. 8).  Linear 

regression results produced coefficients of determination for herbaceous, coastal scrub, 
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and bare ground cover of R2 = 0.80, 0.89, and 0.92, respectively.  The estimated accuracy 

of fractional coverage mapping from remote sensing was calculated in terms of root mean 

square error (RMSE) at 17%, 12%, and 10% for herbaceous, coastal scrub, and bare 

ground, respectively. 

[Insert Fig. 8 here] 

 

5.3. Contributions assessment 

We examined the relative contributions of vegetation index features and textural 

information to the combined OLS analysis results (Table 1 and Table 2).  First, 

relationships of separate features to measured percent cover data sets were determined by 

simple regression.  These outcomes were then compared to the predictions of percent 

cover from the combined feature space (labeled as E contributions).  A higher R value 

indicates higher contribution from indices space to the combined feature space, as shown 

in the rows of Tables 1 and 2 as E contributions. 

 

Features in each of the vegetation indices contributed to discrimination of bare 

ground to a higher degree than for the other two vegetation classes, while textural 

information contributed to the discrimination of coastal scrub to a higher degree than for 

the other two classes.  The index features were directly related to the photosynthetic 

capacity and, hence, the energy absorption of vegetation.  This association contributed 

notably to the discrimination of herbaceous cover from the soil background.  For example, 

PRI index values would be low and declining during the growth phase of the grass 
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canopy and increase rapidly during the senescence period, whereas the PRI would remain 

relatively constant year-round for bare ground areas. 

[Insert Table 1 here] 

 

L-band SAR data contributed useful information to detection of coastal scrub cover 

with an R value of 0.62 (Table 2), but made no contribution to the detection of bare 

ground cover.  AVIRIS feature space provided greater potential for complete vegetation 

discrimination at this site than did SAR texture feature space (Table 1 and Table 2).  This 

AVIRIS imagery was captured in fall season when most of the herbaceous vegetation 

was senesced, which improved the detection sensitivity.  Conversely, the characteristics 

of SAR texture feature space were not affected by the time of the year. 

 [Insert Table 2 here] 

 

We summarized the results using OLS methods to decompose the fractional 

vegetation coverages from the combined feature space using the inputs of HV, HH, 

NDVI, PRI and TCARI/OSAVI in Table 3.   Variance Inflation Factor (VIF) values were 

lower than 7.5 for all input variables (except for that of TCARI/OSAVI) which indicated 

no explanatory variable redundancy during the weighted decomposition [35]. VIF 

quantifies the degree of multicollinearity in an OLS regression analysis.  It provides a 

measure of how much the variance of an estimated regression coefficient (the square of 

the estimate's standard deviation) is increased because of collinearity.  Robust regression 

results were included in Table 3 to evaluate the effects of bad leverage outliers that would 

otherwise bias the parameter estimation with a non-normal distribution.  A robust 
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determination down-weights outliers and also accounts for non-normality in sample 

distributions [35].  The results of these two parameters (t-test and Robust Probabilty) 

indicated that the SAR HV or HH explanatory variables were statistically significant (p < 

0.1) in the OLS for herbaceous and bareground covers. 

[Insert Table  3 here] 

 

 

6. DISCUSSION 

 

Remote sensing is the only practical method to map vegetation types in the steep 

and inaccessible mountains and valleys of the central Pacific coast.  The results presented 

in our study offer a baseline mapping estimate of vegetation status in an area of the 

western United States subject to extreme weather events, climate change, and regular 

wildfires [24].  The methods described above can be replicated in years to come to assess 

even subtle or large-scale changes in central California’s coastal vegetation cover. 

 

In our previous studies [11], we achieved optical and radar (C- and L-band) fusion 

to estimate 10-m sagebrush, grass, and bare ground percent covers in non-forested areas 

of Yellowstone National Park, WY.  Results were generated from C-band VV 

polarization backscatter images, coupled with Landsat Tasseled Cap Greenness and L-

band HV.  In this study in Big Sur, CA, we used radar backscatter directly, with texture 

information extracted first.  More optical features extracted from AVIRIS data were 

coupled with four texture measurements from L-band SAR data. We showed that texture 
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feature space contributes significantly to the discrimination of coastal scrub from mixed 

pixels of herbaceous and bare ground.  Likewise. Manninen and Ulander [50] reported 

that SAR texture data was successful used to retrieve forest structure parameters.  Soh 

and  Tsatsoulis [51], showed that SAR texture representations were use for describing sea 

ice patterns. In our study results, SAR texture features contributed to coastal scrub and 

herbaceous discrimination at the statistically significant p < 0.05 level.  

 

In conclusion, our results showed that the fusion of hyperspectral imagery and L-

band SAR data can be used for highly accurate fractional vegetation mapping in the 

herbaceous-shrub communities of coastal California.  The most striking results were 

obtained with the addition of L-band SAR texture features to help discriminate 

herbaceous cover from coastal scrub. Textural information from SAR data improved the 

fractional decomposition significantly.  Expanded map products for vegetation fractional 

cover can next be ingested into biogeochemical cycling models [48] for the entire central 

California coastal region to improve annual plant production and fuel biomass loading 

predictions. 
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Table 1. Pearson correlation (R-values) of the percentage derived from AVIRIS indices 

feature space and the combined feature space of the OLS results. 

 

- HB_Indices CS_Indices BG_Indices HB_E CS_E BG_E 

HB_Indices 1.00      

CS_Indices -0.65 1.00     

BG_Indices -0.70 -0.09 1.00    

HB_E 0.75 -0.45 -0.56 1.00   

CS_E -0.33 0.75 -0.28 -0.56 1.00  

BG_E -0.49 -0.27 0.90 -0.54 -0.40 1.000 

 

Abbrreviations: HB_Indices, CS_Indices, and BG_Indices represent percentage value 

derived from the feature space directly, whereas HB_E, CS_E, and BS_E represent the 

final combined percentage values for herbaceous (HB), coastal scrub (CS), and bare 

ground (BG) coverages. 
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Table 2. Pearson correlation (R-values) of the percentage derived from PALSAR texture 

feature space and the combined feature space of the OLS results. 

 

- HB_Texture CS_Texture BG_Texture HB_E CS_E BG_E 

HB_Texture 1.00      

CS_Texture -0.52 1.00     

BG_Texture N/A N/A 1.00    

HB_E 0.09 0.19 N/A 1.00   

CS_E 0.30 0.62 N/A -0.56 1.00  

BG_E -0.21 -0.09 N/A -0.54 -0.40 1.00 

 

Abbrreviations: HB_ Texture, CS_Texture, and BG_Texture represent percentage value 

derived from the feature space directly, whereas HB_E, CS_E, and BS_E represent the 

final combined percentage values for herbaceous (HB), coastal scrub (CS), and bare 

ground (BG) coverages. 
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Table 3.  Summary of explanatory variable OLS results for vegetation cover classes at 

Brazil Ranch 

 

a. Coastal scrub cover 

 Variable Coefficient t-Statistic Probability Robust t Robust Pr VIF 
 Intercept -67.77 -3.11   0.0025 ** -4.276 0.0001 **  
 HV -1.027 -0.95    0.34 -0.81  0.418 5.28 
 HH 1.627 1.488 0.140 1.361 0.177 5.15 
 NDVI 171.34 9.68    0.000 ** 10.171    0.000 ** 3.01 
 PRI -4.5E-05 -1.56 0.122 -1.588 0.116 4.41 
 TCA_OSA 0.00008 0.014 0.989 0.014 0.989 7.19 

 

b.  Herbaceous cover 

 Variable Coefficient t-Statistic Probability Robust t Robust Pr VIF 
 Intercept 158.20 3.63 0.0005 ** 3.375 0.001 **  
 HV 4.173 1.94      0.06 * 1.76    0.082 * 5.28 
 HH -4.287 -1.96    0.053 * -2.285 0.025 ** 5.15 
 NDVI -152.72 -4.31 0.00005 ** -3.33 0.001 ** 3.01 
 PRI 0.00028 4.83 0.00001 ** 2.870 0.005 ** 4.42 
 TCA_OSA 0.0043 0.382   0.703 0.312   0.755 7.19 

 

c.  Bare ground cover 

 Variable Coefficient t-Statistic Probability Robust t Robust Pr VIF 
 Intercept 9.57 0.26      0.79 0.235   0.815  
 HV -3.147 -1.74        0.08 * 1.65   0.102 5.28 
 HH 2.66 1.45     0.15 1.794     0.076 * 5.15 
 NDVI -18.62 -0.63     0.53  0.47  0.649 3.01 
 PRI -0.00023 -4.83 0.00001 ** 2.747  0.007 ** 4.41 
 TCA_OSA -0.0044 -0.465     0.64 -0.380   0.705 7.19 

 

Notes: 

* Statistically significant at the 0.1 level and  ** at the 0.05 level   

    Robust t-test and Pr (probability) are the values under an assumption of non-normally 

distributed data. 

   Large VIF (> 7.5, for example) indicates explanatory variable redundancy.   
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Fig. 1. Study Area with (a) US Level III Ecoregions in California [49]  (b) US Level IV 

Ecoregions: 6ah Santa Lucia Coastal Forest and Woodland,  (c)  True color AVIRIS 

imagery of the Brazil Ranch study site (central wavelengths: 638nm, 550nm, and 462nm).  

The white cross symbols are locations of field sample plots and the red circles represent 

plots selected using IKONOS imagery 
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Fig. 2.  SAR backscattering coefficient as a function of local incidence angle before and 

after geometric and radiometric terrain correction 

 

 

Fig. 3. Spectral endmembers derived from AVIRIS data, constrained by the PPI threshold 

and identified by the spectral library from Elvidge [22] 

Herbaceous 
Coastal scrub 
Bare ground 
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Fig. 4. General flow charts of the fractional vegetation cover mapping.  Solid lines 

represent AVIRIS and PALSAR processing steps separately, while the dashed line 

includes the fusion of these two processing steps in the new feature space.  Abbreviations: 

HBV-Herbaceous; CS-Coastal scrub; BG-Bare ground 
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Fig. 5. Fractional vegetation cover mapping: (a) herbaceous, (b) coastal scrub, (c) bare 

ground. 
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Fig. 6.  Histogram comparison of the distribution of 3.5 m resolution pixels at the Brazil 

Ranch study site for three coastal vegetation types divided into five continuous cover 

categories. 
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Fig. 7   Composition of Big Sur coastal vegetation ecotypes by fractional coverage. 
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Fig. 8.  Comparison of (a) herbaceous, (b) coastal scrub, and (c) bare ground fractional 

coverages between field survey estimation and remote sensing predictions. 

 


